Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study.

Liang et al. Ann Rheum Dis. 2010 Aug;69(8):1423-9.

Mesenchymal stem cells are unique in that on the one hand they are capable of differentiating into a variety of tissues, but on the other hand they also are potently anti-inflammatory and immune modulatory.

Evidence of immune modulation comes from studies that show mesenchymal stem cells: a) directly suppress ongoing mixed lymphocyte reaction; b) produce immune suppressive cytokines such as IL-10; c) produce immune suppressive enzymes such as indolamine 2,3 deoxygenase; d) inhibit natural killer and CD8 cytotoxic T cell activity; e) inhibit dendritic cell maturation; and f) stimulate production of T regulatory cells.

Animal studies covered on our youtube channel www.youtube.com/cellmedicine have shown that mesenchymal stem cells inhibit collagen induced arthritis and experimental allergic encephalomyelitis, which represent human rheumatoid arthritis and multiple sclerosis, respectively.

Since these cells are such potent immune modulators, they have been used with some success in the treatment of immunological diseases such as graft versus host disease (GVHD). Medistem and Cellmedicine have previously used fat derived stem cells, which contain high concentrations of mesenchymal stem cells, in order to treat rheumatoid arthritis. In the current paper mesenchymal stem cells from the bone marrow where used to treat the autoimmune disease systemic lupus erythematosus.

Scientists at the Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, in Nanjing, China, reported a clinical trial of allogeneic (universal donor) mesenchymal stem cells in the treatment of patients with treatment-refractory systemic lupus erythematosus (SLE).

Fifteen patients with SLE who did not respond to conventional treatments where administered bone marrow derived mesenchymal stem cells isolated from allogeneic donors. No chemotherapy or immune suppression was used. Administration of stem cells was performed intravenously.

Mean patient follow up was 17.2+/-9.5 months with 13 patients have been followed for more than 12 months. 15/15 patients presented with clinical improvements subsequent to stem cell therapy. At 12-month follow-up, SLEDAI scores dropped from 12.2+/-3.3 to 3.2+/-2.8 and proteinuria decreased from 2505.0+/-1323.9 to 858.0+/-800.7 mg/24 h. At 1-year follow-up in 13 patients, 2 had a relapse of proteinuria, while the other 11 continue to have decreased disease activity on minimal treatment. Anti-dsDNA levels decreased. Improvement in glomerular filtration rate was noted in two patients in which formal testing was performed. Non-renal-related manifestations also improved significantly. No serious adverse events were reported.

This study demonstrated that mesenchymal stem cells are capable of not only inhibiting the pathological processes in SLE (eg production of anti-dsDNA antibodies) but also reversing renal damage that has occurred as a result of the disease process. The fact that some of the patients relapsed may mean that there is a rationale for multiple administration of mesenchymal stem cells.

Arthritis Patient Successfully Treated With Fat Stem Cells Tells His Story

This procedure has been used successfully to treat thousands of animals suffering from arthritis in the United States (www.vet-stem.com). Recently Dr. Paz published a paper describing scientific mechanisms of this treatment in collaboration with scientists from the University of California San Diego, University of Western Ontario, and Medistem Inc (Ichim et al. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol. 2010 Apr 8).

“I had treatment for my arthritis, I was not wheelchair bound but I was getting there… after stem cell treatment my arthritis symptoms disappeared,” stated Mr. Durrill.

More than 200 people attended the lecture including the general public, patients and medical doctors. The lecture was focused on US and European clinical trials supporting the use of adult stem cells in conditions ranging from multiple sclerosis, to heart failure, to diabetes. A video of part of the lecture is available at www.kiiitv.com.

Dr. Paz commented, “Mr. Durrill suffered from arthritis for more than ten years with severe pain in both knees and hips. He had difficulty standing and limited mobility. After stem cell therapy he started showing significant reduction in pain. Now about a month after therapy he is pain free and can move around easily.”
Drs. Robert Harman, CEO of Vet-Stem and Thomas Ichim, CEO of Medistem, recently released a video discussing their publication on fat stem cell therapy for arthritis. The video is available at www.youtube.com.

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at www.translational-medicine.com.

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Cord Blood Stem Cell Therapy for Cerebral Palsy in Clinical Trial

Cerebral palsy is characterized by hypoxia/reperfusion
induced damaged to the brain in the perinatal period. It is manifested in four main types: a)
Spastic, which occurs in 70-80% of cases and is associated with damage to the
corticospinal tract or the motor cortex; b) Ataxic, occurs in 10%, is
associated with damage to the cerebrum, and causes deficiencies in walks, hearing
and speech; c) Athetoid/dyskinetic is caused by injury to the to the
extrapyramidal motor system and/or pyramidal tract and to the basal ganglia, it
occurs in approximately 20% of cases. Cerebral
palsy is a non-progressive disorder in which recovery does not occur and
treatments revolve around addressing symptomology. The possibility of stem cell therapy for
cerebral palsy was proposed by Cellmedicine several years ago and is discussed
in this video http://www.youtube.com/watch?v=egRxgUXDN4Y
.

One type of stem cell that has been used for cerebral palsy
comes from the cord blood. Usually cord
blood stem cells are used for treatment of hematological (blood) disorders such
as leukemias or genetic metabolic conditions. Cellmedicine proposed the use of cord blood for conditions such as
cerebral palsy
http://www.translational-medicine.com/content/pdf/1479-5876-5-8.pdf
because of: a) its superior growth factor producing ability to other types of
adult stem cells; b) the possibility of using cord blood with minimal matching;
and c) the ability of cord blood stem cells to directly differentiate into
other types of cells relevant to cerebral palsy such as neurons and glial
cells.

In order to test validity of the possibility that cord blood
may be useful for such a condition, the developmental cycle that occurs with
drugs has to be applied. That is,
firstly animal data needs to support the possibility of efficacy, as well as
the safety of the intervention. Secondly, pilot human studies are needed to determine if it is feasible
to administer the cells in patients with the particular disease without
possibility of adverse effects. Thirdly,
formal clinical trials need to be initiated. These usually begin with Phase I trials that assess safety and maximally
tolerated dose, Phase II trials that assess efficacy in a non-blinded manner,
and Phase III trials that seek efficacy in a
double-blind placebo-controlled manner.

Groups like Cellmedicine have been involved in treatment of
patients with cord blood. Additionally,
Dr. Joanne Kurtzburg from Duke has been using the patient’s own cord blood in
treatment of patients with cerebral palsy http://www.youtube.com/watch?v=xLmY7Ps65wQ. Both
of these treatments were considered part of the "practice of medicine" and may
be comparable to "pilot investigations" in that safety data was generated and
the medical procedure for physically administering the cells was
developed.

Today a group at the Medical College of Georgia announced
initiation of Phase I/II Placebo-Controlled, Observer-Blinded, Crossover Study
to Evaluate the Safety and Effectiveness of a Single, Autologous, Cord Blood
Stem Cell Infusion for the Treatment of Cerebral Palsy in Children.

The trial involves 40 patients between ages 2-12 who are
seizure-free and have clinical evidence
of a non-progressive motor disability due to brain dysfunction. The subjects recruited
will not have the ability to sit independently by one year of age or the
ability to walk by 18 months of age.

Patients will be
divided into 2 groups, with the first group receiving red-cell depleted, mononuclear
cell enriched cord blood unit prepared for infusion (treatment) and the second
being administered saline combined with the inert stem cell administration
solution lacking stem cells. The
observer and patient will not know who is receiving cells from which
group.

The main observation endpoints of the trial will be safety of autologous (patient’s own)
cord blood infusion in children with cerebral palsy by repeated follow-up over
one year with clinical and laboratory evaluations. The secondary endpoint will
be determination of whether a beneficial effect has occurred in the
recipients. This will be measured using
a patient questionnaire and standardized Gross Motor Function Measure
evaluation with effects anticipated to be seen within 3-4 months.

Conceptually this study is a very safe one because it is the
patient’s own cord blood stem cells that are being used. This however could also be a negative
issue. There is some evidence that when
stem cells from another individual (allogeneic) are used, it is the reaction
between the recipient and donor that gives rise to production of numerous
growth factors. Since this current
treatment is only using the patient’s own cells, it may be similar to simply
adding your own blood back into you. The
animal studies previously performed involved using human cord blood cells in
mice lacking part of the immune system. Additionally they used much higher concentration of cord blood cells per
kilogram of body weight. Regardless, it
is very important to state that this study lays the groundwork for translation
of numerous stem cell approaches that have previously been used for patient
treatment outside of the US, for US approval.

Parents of patients interested in trial participation should
contact James E Carroll, M.D. the Principle Investigator of the study at 706-721-3371 jcarroll@mcg.edu

Histostem Works With Korean Government Agency to Provide Cord Blood Storage for Multicultural Families

The US company Amstem through subsidiary signed a
partnership agreement with the Songpa-Gu Office of the Seoul Metropolitan
Government, to provide umbilical cord blood banking to multicultural families
for up to 15 years.  Cord blood is currently used for treatment of patients with
blood disorders such as leukemias as an alternative to bone marrow. 
Unfortunately many patients do not have suitable donors, this is especially true
in patients of various ethnicities.  The current program is designed to overcome
this problem.

The president of AmStem International, Inc., David Stark
 stated  "This provides AmStem and Histostem with another ‘badge of validity’
with government health agencies around the world. A diverse genetic catalogue of
autologous, HLA-typed stem cell resources such as cord blood is in extremely
high demand right now — not only by individual families, but by
government-sponsored scientists and other researchers worldwide. This is exactly
the kind of collaborative, networking opportunity that AmStem hopes to expand in
North America and Europe."

In recent years the use of cord blood for diseases not
associated with blood has been increasing.  For example, the Cord Blood Bank
Viacell has patents on the use of cord blood for treatment of Duchenne Muscular
Dystrophy (Kraus et al. US patent #7452529 – Treatment of muscular dystrophy
with cord blood cells
).  The Cellmedicine.com group has collaborated with
the US company Medistem at publishing use of cord blood together with other
cells for treatment of a patient with Duchenne Muscular Dystrophy that resulted
in functional improvement (Ichim et al. Mesenchymal stem cells as anti-inflammatories:
implications for treatment of Duchenne muscular dystrophy. Cell Immunol.
2010;260(2):75-82
).  The reason why cord blood appears to be useful in
treatment of a variety of conditions is believed to be due, at least in part, to
ability of the cells to produce numerous therapeutic factors that stimulate stem
cells already in the body to start multiplying.  Additionally, numerous studies
have shown that cord blood derived stem cells can produce cells ranging from
liver to brain to heart muscle.  A description of cord blood stem cells may be
seen on this video

http://www.youtube.com/watch?v=z6CP-OL1Kuc
.

Dr. Hoon Han, AmStem’s Chairman, commented on the cord
blood bank, "With more than 1.1 million foreigners now living in Korea, the
number of multicultural marriages and families is on the rise. By providing
these families the opportunity to store the donated umbilical cord blood, we
give them access to autologous stem cells that may be used in the future
treatment of certain cancers, such as leukemia, as well as immune and genetic
disorders. In addition, by addressing the multicultural population in Korea,
this collaborative opportunity also increases the genetic diversity of the
available supply of umbilical cord blood derived stem cells — which may benefit
Korean and foreign patients alike.
"