Healing juices’ of stem cells could help treat asthma

Research suggests future use of cells in kidney, heart disease
BY BRENT WITTMEIER, EDMONTON JOURNAL DECEMBER 2, 2011

University of Alberta pediatric asthma researcher says that the medical benefits of stem cells may lie in their by-product “healing juices”.

Dr. Bernard Thébaud believes the by-products of mesenchymal stem cells – found in umbilical cord tissue and with known anti-inflammatory characteristics – could possibly heal lungs inflamed by chronic and acute asthma.

The findings, published in the American Journal of Respiratory Cell and Molecular Biology, look at the effects of what Thébaud called “healing juices” on refractory asthma, a form of the disease that is particularly difficult to treat with inhalers.

Thébaud, a neonatal pediatrician and professor of pediatrics at the University of Alberta Faculty of Medicine and Dentistry, said the cells and their juices are easily isolated and cultivated in the lab.

“We cultured the cells in the petri dish, and instead of taking the cells, we just took what the cells produced, the juice they were basically swimming in,” Thébaud said. “We compared that to control cells cultured the same way, but didn’t have that same effect.”

Thébaud’s team created asthma in lab mice, then injected the juices through their noses. The by-products opened airways, restored breathing and reduced inflammation in their lungs.

Thébaud began researching pediatric lung disease in 2002, adding the “exciting” discipline of stem-cell research two years later. The new study builds on some of Thébaud’s previous research into how stem cells work.

“Initially we thought you have to give the cells (to the patient) because they replace dead cells,” he said. “That’s not actually the case.”

Thébaud initially used the mesenchymal stem cells in a study of newborn lung injury, discovering “tremendous benefits” for the health of the lungs. But when his research team tried to see where those stem cells were, they couldn’t find them.

“Maybe they don’t replace dead cells. Maybe they sit there and produce juices, then vanish,” he said.

Although the research is still at an early stage, Thébaud said his hope is for a “super-inhaler” five to 10 years from now that would heal inflammation, boost healthy cells and aid in breathing. He hopes to live the researcher’s dream and drive the discovery from his lab into the clinic.

His goal “would be to have a puffer with stem cell by-products that would prevent those symptoms of asthma,” he said.

Thébaud is convinced it could work. But exactly which compounds or factors are doing the “healing” is hardly academic, and will likely form the next stage in the research.

“It is the question,” said Thébaud. “First, we have to know should we not give the cells, or can we just deliver the juices. Do we have to know what’s in there?”

That question could also delay clinical research by an additional five years, the time he estimates it would take to synthesize the factor pharmaceutically. He will be discussing the study with Health Canada to determine barriers to clinical research using just undifferentiated by-products.

Thébaud also believes the approach demonstrates “many therapeutic avenues” beyond asthma, which affects an estimated 300 million people worldwide. The potential of stem-cell research isn’t yet known.

“It’s up to us now to harness the healing powers of these cells,” he said.

“We know it works in a variety of lung diseases. By extension, we know it will work in kidney, or heart or brain disease as well.”

Immune Cells Killing Stem Cells and Stem Cells Killing Immune Cells

Knight et al. J Neurol Sci.
Several studies have demonstrated that stem cells are useful in the treatment of multiple sclerosis. The Cellmedicine clinic published previously in collaboration with the University of California San Diego that 3 patients treated with their own fat derived stem cells entered remission. Other studies are ongoing, including a study at the Cleveland Clinic in which bone marrow stem cells differentiated into mesenchymal stem cells are being administered into patients with multiple sclerosis. Unfortunately the mechanisms by which therapeutic effects occur are still largely unknown. One general school of thought believes that stem cells are capable of differentiating into damaged brain cells. The other school of thought believes that stem cells are capable of producing numerous growth factors, called trophic factors, that mediate therapeutic activity of the stem cells. Yet another school of thought propagates the notion that stem cells are merely immune modulatory cells. Before continuing, it is important to point out that stem cell therapy for multiple sclerosis involving autologous hematopoietic transplants is different than what we are discussing here. Autologous (your own) hematopoietic stem cell therapy is not based on regenerating new tissues, but to achieve the objective of extracting cells from a patients, purifying blood making (hematopoietic) stem cells, destroying the immune system of the recipient so as to wipe out the multiple sclerosis causing T cells, and subsequently readministering the patient’s own cells in order to regenerate the immune system. This approach, which was made popular by Dr. Richard Burt from Northwestern University.
In order to assess mechanisms of how stem cells work in multiple sclerosis it is necessary to induce the disease in animals. The most widely used animal model of multiple sclerosis is the experimental allergic encephalomyelitis model. This disease is induced in female mice that are genetically bred to have a predisposition to autoimmunity. These animals are immunized with myelin basic protein or myelin oligodendrocyte protein. Both of these proteins are components of the myelin sheath that protects the axons. In multiple sclerosis immune attack occurs against components of the myelin sheath. Therefore immunizing predisposed animals to components of the myelin sheath induces a disease similar to multiple sclerosis. The EAE model has been critical in development of some of the currently used treatments for multiple sclerosis such as copaxone and interferon.
Original studies have demonstrated that administration of bone marrow derived mesenchymal stem cells protects mice from development of EAE. This protection was associated with regeneration on oligodendrocytes as well as shifts in immune response. Unfortunately these studies did not decipher whether the protective effects of the stem cells were mediated by immune modulation, regeneration, or a combination of both. Other studies have shown that MSC derived from adipose tissue had a similar effect. One interesting point of these studies was that the stem cell source used was of human origin and the recipient mice were immune competent. One would imagine that administration of human cells into a mouse would result in rapid rejection. This did not appear to be the case since the human cells were found to persist and also to differentiated into human neural tissues in the mouse. One mechanism for this “immune privilege” of MSC is believed to be their low expression of immune stimulatory molecules such as HLA antigens, costimulatory molecules (CD80/86) and cytokines capable of stimulating inflammatory responses such as IL-12. Besides not being seen by the immune system, it appears that MSC are involved in actively suppressing the immune system. In one study MSC were demonstrated to naturally home into lymph nodes subsequent to intravenous administration and “reprogram” T cells so as to suppress delayed type hypersensitive reactions. In those experiments scientists found that the mechanism of MSC-mediated immune inhibition was via secretion of nitric oxide. Other molecules that MSC use to suppress the immune system include soluble HLA-G, Leukemia Inhibitor Factor (LIF), IL-10, interleukin-1 receptor antagonist, and TGF-beta. MSC also indirectly suppress the immune system by secreting VEGF which blocks dendritic cell maturation and thus prevents activation of mature T cells.
While a lot of work has been performed investigating how MSC suppress the immune system, relatively little is known regarding if other types of stem cells, or immature cells, inhibit the immune system. This is very relevant because there are companies such as Stem Cells Inc that are using fetally-derived progenitor cells therapeutically in a universal donor fashion. There was a paper from an Israeli group demonstrating that neural progenitors administered into the EAE model have a therapeutic effect that is mediated through immune modulation, however, relatively little work has been performed identifying the cell-to-cell interactions that are associated with such immune modulation.
Recently a paper by Knight et al. Cross-talk between CD4(+) T-cells and neural stem/progenitor cells. Knight et al. J Neurol Sci. 2011 Apr 12 attempted to investigate the interaction between immune cells and neural stem cells and vice versa. The investigators developed an in vitro system in which neural stem cells were incubated with CD 4 cells of the Th1 (stimulators of cell mediated immunity), Th2 (stimulators of antibody mediated immunity) and Th17 (stimulators of inflammatory responses) subsets. In order to elucidate the impact of the death receptor (Fas) and its ligand (FasL), the mouse strains lpr and gld, respectively, were used.
The investigators showed that Th1 type CD4 cells were capable of directly killing neural stem cells in vitro. Killing appeared to be independent of Fas activation on the stem cells since gld derived T cells or lpr derived neural stem cells still participated in killing. Interestingly, neural stem cells were capable of stimulating cell death in Th1 and Th17 cells but not in the Th2 cells. Killing was contact dependent and appeared to be mediated by FasL expressed on the neural stem cells. This is interesting because some other studies have demonstrated that FasL found on hematopoietic stem cells appears to kill activated T cells. In the context of hematopoietic stem cells this phenomena may be used to explain clinical findings that transplanting high numbers of CD34 cells results in a higher engraftment, mediated in part by killing of recipient origin T cells.
The finding that neural stem cells express FasL and selectively kill inflammatory cells (Th1 and Th17) while sparing anti-inflammatory cells (Th2) indicates that the stem cells themselves may be therapeutic by exerting an immune modulatory effect. One thing that the study did not do is to see if differentiated neural stem cells would mediate the same effect. In other words, it is essentially to know if the general state of cell immaturity is associated with inhibition of inflammatory responses, or whether this is an activity specific to neurons. As mentioned above, previous studies have demonstrated that mesenchymal stem cells (MSC) are capable of eliciting immune modulation through a similar means. Specifically, MSC have been demonstrated to stimulate selective generation of T regulatory cells. This cell type was not evaluated in the current study, however some activities of Th2 cells are shared with Treg cells in that both are capable of suppressing T cytotoxic cell activation. In the context of explaining biological activities of stem cell therapy studies such as this one stimulate the believe that stem cells do not necessarily mediate their effects by replacing damaged cells, but by acting on the immune system. Theoretically, one of the reasons why immature cells are immune modulatory in the anti-inflammatory sense may be because inflammation is associated with oxidative stress. Oxidative stress is associated with mutations. Conceptually, the body would want to preferentially protect the genome of immature cells given that the more immature the cells are, the more potential they have for stimulation of cancer. Mature cells have a limited self renewal ability, whereas immature cells, given they have a higher potential for replication are more likely to accumulate genomic damage and neoplastically transform.

AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to PerkinElmer’s ViaCord

Viacord Press Release
Cord blood private banking involves storing your own cord blood mononuclear cells in case you need them later. Cord blood public banking involves banking the cells into a public pool so that if others need them, they have access to them. In some ways it seems like cord blood private banking is based more on hope than on reality. The majority of uses of cord blood are in leukemias. In patients with leukemia you need to use the cord blood of a related or unrelated donor, but rarely if ever do you want to use your own cord blood because it may have the leukemic mutations in it that caused the leukemia to appear in the first place. Therefore, the majority of cord blood banking is based on the belief that in the future the FDA will allow for procedures to take your banked cord blood, manipulate it to generate certain tissues in vitro and then reimplant those tissues back in you if you need them. There are of course exceptions to this. For example, there are clinical trials using your own cord blood for the treatment of cerebral palsy. Specifically, Georgia Health Sciences University is doing a 40 patient cord blood study in patients with cerebral palsy who have stored their own cord blood http://www.clinicaltrials.gov/ct2/show/NCT01072370. Additionally, Joanne Kurtzberg from Duke is performing an 120 patient study in children with cerebral palsy that have stored their own cord blood http://www.clinicaltrials.gov/ct2/show/NCT01147653. Other diseases are also being explored experimentally. Clinical trials are also being performed using patient’s own cord blood for type 1 diabetes. A group in Germany is doing a 10 patient trial http://www.clinicaltrials.gov/ct2/show/NCT00989547 and a group in Florida recently completed a 23 patient trial http://www.clinicaltrials.gov/ct2/show/NCT00305344.
Thus at present the field of private cord blood banking may have some very high future potential. Large companies are realizing this and accordingly are moving into this space. Perkin Elmers announced today that it has licensed technologies patented by AuxoCell Laboratories involving processing and storage of mesenchymal stem cells from the umbilical cord. As we discussed previously on the Cellmedicine website, the umbilical cord possesses mesenchymal stem cells that are in some ways more potent than bone marrow mesenchymal stem cells because they are more immature. The licensing of this technology will allow for Perkin Elmers to deliver to customers the ability to bank not only hematopoietic stem cells but also mesenchymal stem cells. There are many uses for mesenchymal stem cells. In fact numerous clinical trials have been performed using autologous mesenchymal stem cells for conditions ranging from heart failure, to graft versus host, to spinal cord injury.
“AuxoCell is pleased to partner with PerkinElmer’s ViaCord in offering umbilical cord tissue banking and expand our strategic partnerships to bring novel stem cell therapies from the bench to the bedside,” said Kyle Cetrulo, chief operating officer of AuxoCell Laboratories, Inc. “Partnering with ViaCord was an easy decision. They are the first family bank in the United States to freeze treatment-ready cord tissue stem cells upon arrival at the lab, which enables them to be ready for immediate use, if needed.”
“ViaCord is excited to offer another source of stem cells to our customers and believe we have found an excellent partner in AuxoCell. The agreement grants ViaCord’s customers exclusive access, in family banking, to expanding MSCs derived from cord tissue through AuxoCell’s elite patents,” said Morey Kraus, ViaCord’s chief scientific officer. “AuxoCell’s proprietary and validated manufacturing protocols will assist ViaCord in offering the very best in stem cell banking.”

World’s First Chemical Guided Missile Could Be the Answer to Wiping out Cancer

A research team at Deakin University has made a discovery that could have huge implications on the treatment and survival rates of cancer victims. The researchers, along with scientists in India and Australia have created the world’s first RNA aptamer, a chemical antibody that targets cancer stem cell marker epithelial cell adhesion molecule (EpCAM). This marker is overexpressed in cancer cells, thus allowing the RNA aptamer to bind directly to the cell before being internalized. The implications of this are that the aptamer has the potential ability to deliver drugs directly to the cancer stem cells and can also be used to develop a more effective cancer imaging system for early detection of the disease.

“Despite technological and medical advances, the survival rates for many cancers remain poor, due partly to the inability to detect cancer early and then provide targeted treatment,” said Professor Wei Duan, the Director of the Deakin Medical School’s Nanomedicine Program. “Current cancer treatments destroy the cells that form the bulk of the tumour, but are largely ineffective against the root of the cancer, the cancer stem cells. This suggests that in order to provide a cure for cancer we must accurately detect and eliminate the cancer stem cells.”

The aptamer is the first part of the ‘medical smart bomb’ the researchers have been developing. “What we have created is the ‘guided missile’ part of the ‘smart bomb’,” Professor Duan explained. “The aptamer acts like a guided missile, targeting the tumour and binding to the root of the cancer. “The aim now is to combine the aptamer with the ‘bomb’ (a microscopic fat particle) that can carry anti-cancer drugs or diagnostic imaging agents directly to the cancer stem cells, creating the ultimate medical smart bomb.”

“The cancer stem cell-targeting missile and the smart bomb could revolutionise the way cancer is diagnosed,” he explained. “The minute size of the aptamer means it could locate cancer cells in their very early stages. Attaching radioactive compounds to the aptamer could lead to the development of sensitive diagnostic scans for earlier detection, more accurate pinpointing of the location of cancer, better prediction of the chance of cure and improved monitoring of the response to treatment. More accurate identification of the type of cancer present would lead to more personalised treatment that is more successful and cost-effective. This could ultimately lead to better cancer survival rates and greatly improved quality of life for patients.”

Differences between Stem Cells from the Placenta and Bone Marrow

Fazekasova et al. Mesenchymal stem cells were historically isolated from the bone marrow as an adherent stem cell population capable of “orthodox” differentiation, meaning that they have ability to become bone, cartilage, and fat. Further research revealed that these cells are also capable of “non-orthodox” differentiation, that is, becoming neurons, hepatocytes, insulin producing cells, and lung cells. Given the high number of growth factors secreted by mesenchymal stem cells, numerous companies have sought to develop therapeutic products from mesenchymal stem cells. For example, Osiris Therapeutics has been developing bone marrow mesenchymal stem cells as a treatment for Graft Versus Host Disease. Athersys has been using bone marrow derived mesenchymal-like cells for treatment of heart disease, and Mesoblast has been using these cells for treatment of bone injury.

A new generation of companies has been focusing other mesenchymal-like cells derived from other tissues. For example, Medistem Inc has identified endometrial regenerative cells (ERC), a type of mesenchymal-like stem cell that is found in the endometrium and appears to have higher ability to produce growth factors that stimulate new blood vessel production as compared to other sources of mesenchymal stem cells. General Biotechnology LLC has been developing tooth derived mesenchymal stem cells for treatment of neurological disorders. Celgene has been using placental-derived mesenchymal stem cells for treatment of critical limb ischemia, a disorder associated with poor circulation of the legs.

Given that there appear to be various sources of mesenchymal stem cells, an important question is how do these cells compare when they are used in experiments side by side. In a paper published this month, placental derived and bone marrow derived mesenchymal stem cells were compared. The scientists found that higher numbers of mesenchymal stem cells could be isolated from the placenta as compared to the bone marrow. Interestingly, placental mesenchymal stem cells were found to be comprised of both fetal and maternal origin.

One of the critical features of mesenchymal stem cells is that they are able to be used without need for matching with the recipient. This is because mesenchymal stem cells are historically known to be “immune privileged”. One of the experiments that the scientists did was to examine whether there is a difference between the bone marrow and placentally derived mesenchymal stem cells in terms of immunogenicity.

Placentally derived mesenchymal stem cells expressed lower levels of the immune stimulatory molecule HLA class I and higher levels of the immune suppressive molecules PDL-1 and CD1a, compared to bone marrow derived mesenchymal stem cells. However, when both cell types were treated with interferon gamma, the placentally derived mesenchymal became much more immune stimulatory as compared to the bone marrow cells. Furthermore it appeared that direct incubation with T cells resulted in higher T cell stimulation with the placental mesenchymal stem cells as compared to the bone marrow cells. Thus from these data it appears that bone marrow derived mesenchymal stem cells are more immune privileged as compare to placental derived cells.

Stem cell therapy benefits patients with chronic heart failure—study

(Neharika Sabharwal) After a heart attack the myocardium (heart muscle) undergoes a period of damage during which cells of the body attempt to heal the injured tissue. This occurs through stem cells found in the heart itself, called cardiac specific stem cells (CSC) as well as bone marrow stem cells which seem to exit the bone marrow, enter circulation, and migrate towards the area of cardiac damage.

Given that the bone marrow stem cells seem to both directly become new heart cells, as well as stimulate formation of new blood vessels that accelerate the healing process, it may be theoretically beneficial to administer bone marrow stem cells to patients after a heart attack. Administration of stem cells is usually performed in these patients by means of a balloon catheter. This device temporarily occludes the artery that is feeding the blood vessel that provides circulation to the area of the injured muscle. While occlusion is occurring cells are administered. This allows the cells to enter the cardiac circulation in a highly concentrated manner. This type of stem cell therapy is termed “post-infarct intracoronary administration of stem cells”.

The use of intracoronary bone marrow transplantation has been published in many clinical trials with overall success in stimulating heart muscle function as judged by the left ventricular ejection fraction. Additionally, bone marrow stem cells have been demonstrated to reduce pathological remodeling by inhibiting the dilation of the ventricles that occurs after a heart attack.

While short-term effects of bone marrow stem cell administration are well-known, little is known about long term effects. A recent study, called the STAR Heart Study, aimed to compare bone marrow cells versus optimal conventional therapy in patients with heart failure due to healed myocardial infarction.

The study demonstrated that intracoronary bone marrow stem cell therapy not only improves ventricular performance and quality of life but also the long term rate of survival in patients with chronic heart failure, claims a new study.

According to researchers, the beneficial effects of stem cell therapy were perceived within three months of the treatment and the effect continued for well over five years. Lead scientist of the study, Bodo-Eckehard Strauer of Duesseldorf’s Heinrich Heine University in Germany said, “Our study suggests that, when administered as an alternative or in addition to conventional therapy, bone marrow cell therapy can improve quality of life, increase ventricular performance and increase survival.”

Currently several companies are developing devices that allow for the use of patient’s own stem cells for intracoronary administration post infarct. One such company is the Hackensack NJ based Amorcyte Inc, which uses standard bone marrow extraction procedures, isolates CD34 positive cells using the Baxter Isolex device, and subsequently infuses the isolated cells using a catheter based technique. The company Aldagen is also performing a similar procedure, however instead of purifying stem cells based on CD34 they are using aldehyde dehydrogenase expression as a means of isolating stem cells from non-stem cells from the bone marrow.

The STAR study was reported at the ‘European Society of Cardiology (ESC) 2010 Congress. It tracked 391 patients with chronic heart failure because of ischemic heart disease following a heart attack. Out of 391 patients, 191 agreed to have the bone marrow stem cell treatment. The remaining 200 who refused therapy participated as the control group.

The patients were monitored for a period of five years after bone-marrow-cell therapy with results at 3 months, one year and five years showing a significant difference between the treatment and control group. At five years only 7 patients who received stem cells died, as compared to 32 in the control group. No treatment associated adverse events of a serious nature were observed.

Dr Mariell Jessup, medical director of the Penn Heart and Vascular Center at the University of Pennsylvania stated, “The hope is that by injecting stem cells into the scarred area, you will bring life back to that area and induce healthy muscle…There’s been ongoing excitement about using stem cells to treat heart disease for some time and this study certainly adds to it.”

Arthritis Patient Successfully Treated With Fat Stem Cells Tells His Story

This procedure has been used successfully to treat thousands of animals suffering from arthritis in the United States (www.vet-stem.com). Recently Dr. Paz published a paper describing scientific mechanisms of this treatment in collaboration with scientists from the University of California San Diego, University of Western Ontario, and Medistem Inc (Ichim et al. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol. 2010 Apr 8).

“I had treatment for my arthritis, I was not wheelchair bound but I was getting there… after stem cell treatment my arthritis symptoms disappeared,” stated Mr. Durrill.

More than 200 people attended the lecture including the general public, patients and medical doctors. The lecture was focused on US and European clinical trials supporting the use of adult stem cells in conditions ranging from multiple sclerosis, to heart failure, to diabetes. A video of part of the lecture is available at www.kiiitv.com.

Dr. Paz commented, “Mr. Durrill suffered from arthritis for more than ten years with severe pain in both knees and hips. He had difficulty standing and limited mobility. After stem cell therapy he started showing significant reduction in pain. Now about a month after therapy he is pain free and can move around easily.”
Drs. Robert Harman, CEO of Vet-Stem and Thomas Ichim, CEO of Medistem, recently released a video discussing their publication on fat stem cell therapy for arthritis. The video is available at www.youtube.com.

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at www.translational-medicine.com.

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Muscular Dystrophy Sufferers Hope New Treatment Can Answer Prayers

Adult stem cell therapy has been used for many diseases
including heart failure, liver failure, stroke, multiple sclerosis, and even
drug resistant tuberculosis. The biological basis for how stem cell therapy
works seems to be two-fold. On the one hand, the stem cells appear to have the
ability to become new tissues, on the other hand, the stem cells produce various
proteins that stimulate the body to heal itself. One condition for which stem
cell therapy may offer great hope is Duchenne Muscular Dystrophy, a disease in
which muscle cells deteriorate due to the presence of a mutated gene (dystrophin)
whose protein produce is involved in muscle contraction.

Researchers from Cellmedicine in collaboration with
Medistem has previously published a case report in the peer-reviewed literature
demonstrating improvement in a Duchenne’s patient treated with mesenchymal stem
cells (Ichim et al. Mesenchymal stem cells as anti-inflammatories:
implications for treatment of Duchenne muscular dystrophy. Cell Immunol.
2010;260(2):75-82
). The patient described in the paper, Ryan Benton, was
the subject of a previous news report which is available at

http://www.youtube.com/watch?v=Jyt2LHayjcs
.

Today a news report was published describing follow-up on
Ryan Benton as well as another Duchenne’s patient Ian Conner that was treated
with stem cells by Cellmedicine.

Ryan and Ian have known each other all of their lives,
having watched their condition progressively deteriorate. Last year Ian’s
condition substantially worsened.

"At the time, I didn’t think I was going to live much
longer," Conner said. His mother Laurie Conner stated "Last year, I thought it
would be very soon that he would be dying. We needed to get ready, because he
was so sick, in bed a lot and he felt terrible." However there was a glimmer of
hope. Ian’s mother told him about the response Ryan had after receiving stem
cell therapy.

"We got a muscle biopsy back and it has produced dystrophin
and it’s producing normal amounts of dystrophin," Ryan said. He continued "The
main difference I’ve noticed I’ve gained a lot of weight I was down to 77
pounds."

The treatment appears to show greater effects the more
times the stem cells are injected. Both Ian and Ryan are hoping that stem cell
therapy for Duchenne’s will one day be approved in the United States so that
they do not have to travel outside of the country.

Dr.
Riordan has been in discussions with various organization and welcomes any input
on collaborations that can be used to accelerate implementation of this approach
through the Food and Drug Administration.

Stem-cell therapy feels Food and Drug Administration’s pinch

62-year-old Hal Kaye had an injection of his own stem cells into his injured ankle, the results were so astonishing that he no longer needed surgery. The treatment, developed by a Broomfield doctor, has been applied to over 500 patients in the United States, primarily for orthopedic conditions, and involves extraction of bone marrow stem cells, expansion of the cells, and subsequent readministration.Three years after administration of the stem cells, Hal Kay says "I can walk anywhere now. It’s been an incredible recovery." Mr Kay no longer needs to use his cane and has reported a significant improvement.

Unfortunately the treatment has resulted in concerns by the Food and Drug Administration.In 2008 the FDA sent the Broomfield doctor
a letter stating that since the procedure was not approved according to regulator channels such as a Biologics License Application (BLA). Typically cell therapy falls into the category of a "biologic" and therefore requires 2 successful Phase clinical trials before it can be sold to the general population. The doctor was asked by the FDA to provide a response detailing "steps you have taken or will take to address the violations."

While the doctor claims to have responded to the FDA, no formal reply to his response was provided he stated. His position is that a person’s own stem cells, despite being expanded in tissue culture in a laboratory, are not a drug.

Currently the doctor has assembled a team of colleagues and will be meeting with the FDA to present their position that stem cell therapy using cells from the same patient should be regulated as a medical practice and not as a new drug.His argument comes in
part from the example of in vitro fertilization, an area of medicine that is regulated by a peer-reviewed panel but not by the FDA.

Interestingly, not all doctors have followed the approach of going against the FDA’s position. Companies such as TCA Cellular
Therapy from Louisiana are applying to the FDA for clinical trials and are currently conducting controlled experiments in order to obtain approval through the regular channels. This is despite the fact that they are using stem cells from the same patient.

In the opinion of most biotechnology companies we discussed with, the outcome of the discussions with the FDA will be of great
importance.Regulation of autologous therapies has been around for decades. Before stem cells became popular, the use of patient’s own immune cells such as dendritic cells or T cells also required FDA approval. This has set up the current paradigm for
developing cell-based therapies.In our opinion the use of patient’s own stem cells without expansion may in some
situations be acceptable for performance without FDA review, however, expanding cells in tissue culture is a very complex and difficult procedure. It will be important for the FDA to regulate this since there are numerous possibilities for non-pure cell products being used if the industry is unregulated.

Coach’s fight a team effort

Sam Harrell is a well-known Ennis football coach and father of Texas Tech’s former quarterback Graham Harrell. Steve Betik has worked in construction for decades. Both of them suffer from multiple sclerosis. When they asked the Ennis chiropractor Dr. William Davis about using stem cells for their condition, his reaction was that it would be expensive, but if they wanted to go for it, he would help raise the needed funds. Both of them have registered for an experimental stem cell therapy offered in Central America by Cellmedicine. This is the same stem cell treatment that allowed Texas Fort Worth Police Sergeant Preston Walker, a patient with multiple sclerosis be able to
return to work after failing to respond to the medication given by his neurologist.

Treatment for multiple sclerosis generally addresses symptoms, but when conventional approaches stop inducing responses, there are very little options left. One area of active investigation has been stem cell therapy. Although very new, a small three-year study by the Northwestern University School of Medicine concluded last year that stem cell transplants from the patients’ own bodies might help control or even reverse symptoms.

Unfortunately, FDA approval of such methods, even if documented in larger research, is years away. Specifically, three phases of clinical trials have to be conducted. Phase I involves testing of safety. Phase II clinical trials
test whether there is a therapeutic effect, however these are “unblinded” in that the patients know that they are receiving an experimental treatment, thus the possibility exists of placebo effect. Phase III clinical trials are performed at multiple hospitals in a “double blinded” manner so that neither the doctor, nor patient knows whether they are receiving the treatment or the placebo. At present stem cell therapy for multiple sclerosis has only reached
Phase I/II clinical trials.

Companies such as www.cellmedicine.com offer stem cell therapy based on the same science and medical practices used in the United States. To date over 200 patients with multiple sclerosis have been treated by Cellmedicine, however they openly state that the procedure is experimental. This did not deter Sam Harrell and Steve Betik.They are scheduled to fly together in June to the Cellmedicine clinic in Central America, where Harrell is expected to remain two weeks; Betik, a month.

In order to raise funds to support their treatment, the Ennis football boosters club, in conjunction with the town’s chamber of commerce, is hosting a dinner and auction April 10. Davis and others hope that any excess funds they raise through the Foundation for Hope will be applied to an annual fundraiser for anyone with special needs.

“We’re like babies crawling,” Davis said of their efforts. “Who knows what the future will hold?”

Patients interested in learning more about Cellmedicine can go to the website www.cellmedicine.com or view videos at www.youtube.com/cellmedicine