New Stem Cell Therapy Guidelines Approved in Texas

The Texas Medical Board has approved new rules regulating adult stem cell therapies similar to the ones used to treat Governor Rick Perry last summer, the Associated Press (AP) reported on Friday.

The rules were drafted by the state board, which licenses and disciplines doctors, at the request of Houston’s Dr. Stanley Jones, the same man who in July 2011 injected Perry with the governor’s own stem cells in order to help him recover from a back injury, Nathan Koppel of the Wall Street Journal said.

Koppel noted that the new regulations will make it easier for medical professionals in Texas to offer the experimental treatments without needing to obtain federal approval, while the AP added that the rules to require patients to provide their express consent to the procedure, as well as receive approval from a review board before the stem cell therapy is permitted to begin.

“We know this is far from a perfect policy, but our hope is that this affords people in Texas seeking this therapy some protection,” Texas Medical Board President Dr. Irwin Zeitler told Todd Ackerman of the Houston Chronicle. “The wheels of federal government move so slowly – we’re not willing to wait to protect our patients.”

The rules were approved by a 10-4 vote, and members of the board have promised that they will consider revising and improving the policy as early as June, when they meet again, Ackerman said. The official start date for the new policy was not announced, but staffers told the Chronicle that it will be at least 30 days.

While Perry has lauded the stem cell treatment he has received, not everyone shares his enthusiasm for the procedure, according to Minjae Park of the New York Times.

Some researchers argue that the evidence of stem cell injections is anecdotal in nature, and that the results of clinical trials should ideally be obtained before doctors are allowed to perform the treatment, which can cost tens of thousands of dollars, added Park.

Leigh Turner, a professor at the University of Minnesota’s Center for Bioethics, told the New York Times, that there were “some real problems” with the Texas regulations, adding that the “protective mechanism that they’re focusing on” would not be able to do terribly much.

Mario Salinas, the director of Texans for Stem Cell Research, countered that the rules would protect patients and help eliminate treatments without some kind of oversight. As he told Park, “Doing something at this point is better than doing nothing… This is just the first step.”

“The fight to walk” – spinal cord injury patient improving after stem cell therapy in Panama

Daniel-Leonard-1-StemCell

Daniel Leonard working out at physical therapy

Published March 31, 2012
By Sue Guinn Legg – Press Staff Writer

Daniel Leonard is doing all he can to walk again, and after a recent course of stem cell treatment he’s as close as he has been since a few months after the 2005 injury that put him a wheelchair.

He was 22 years old and about to begin his third year of college when he woke up one August morning on the floor at his family’s Johnson City home unable to move and struggling to breathe.

While the cause of his injury remains a mystery, what is known is that three vertebrae near the top of his spine had been crushed, leaving him paralyzed from the neck down, on a ventilator and not expected to never walk or even breathe on his own again.

Six months after undergoing surgery to remove the bone fragments from his spinal cord, Leonard, who had played several sports in high school and was boxing at the Johnson City Athletic club prior to his injury, was exceeding all expectations.

In treatment at the Patricia Neal Rehabilitation Center in Knoxville, he was not only breathing independently, he was pulling himself up on parallel bars and being fitted with leg braces to help him take his first steps.

Then the unthinkable happed, again. Because there had been nothing done to stabilize his damaged vertebrae, his spine collapsed at the site of his injury and all of his progress was lost.

“I worked my butt off to get to the point I was about to start walking,” he said. But the gains he had made in upper body strength were erased and there was no longer any movement in his legs.

After a second surgery to fuse the bones, his condition was labeled as “incomplete paraplegia” characterized by limited movement and sensation in all the muscles below his neck and none at all in his legs. Doctors told his family he would never be able to move his legs, and for many years he could not.

For a while, he lived independently with the assistance of a caregiver. When his caregiver left, he moved to a nursing home, expecting to stay only long enough to find another place and another caregiver. But without money to finance that plan, months turned into years and the Four Oaks Health Care Center in Jonesborough became his home for the long term.

Early last year, things took a turn for the better when for reasons unknown he began to regain some movement in his legs. Encouraged, Leonard once again threw all his effort into physical therapy. In October, he began working out regularly with Amy Caperton, a personal trainer at the Tri-Cities Lifestyles fitness center in Johnson City, and coupled that with physical therapy at the new Mountain States Rehabilitation Center.

His family, who had long believed stem cell treatment would provide his best chance at recovery, stepped up their efforts to pay for the treatment.

His sister, Rachael Leonard, a business consultant who had been following the progress of stem cell research and exploring treatment options since a few days after Daniel was injured, zeroed in on The Stem Cell Institute, a reputable facility in Panama founded by Neil Riordan PhD, that concentrates on treatment of spinal cord injuries, muscular sclerosis, rheumatoid arthritis and heart disease.

His mother and siblings pooled their resources and came up with about half the $45,000 needed for the $35,000 cost of his first four-week course of treatment and travel expenses for Daniel, Rachel and their mother, Diane, to make the trip to Panama.

The balance was raised through a series of small benefits — dinners at area restaurants, a concert and an auction, and through many individual gifts and online contributions to Daniel’s fundraising page, www.givefoward.com/danielleonardstemcells.

“People we know around here and businesses were very generous and there was a lot of money raised,” his mother said.

To clear up any misconceptions about the treatment, the family emphasized to everyone interested that the stem cells used at the institute come from umbilical cords donated by new parents and the patients’ own bone marrow and referred them to www.cellmedicine.com for specifics.

“I’m not trying to tell people what to do with their own bodies, but for me, if it had been kill a baby to walk again, there’s no way I would have,” Daniel Leonard said.

The family finally made it to Panama in February. The treatment began with two weeks of daily cord blood cell injections into his spinal fluid and two hours of “intense interval” therapy that requires Leonard to work his muscles as hard as possible for one minute, rest for two minutes and repeat the process over the course of an hour.

“One hour is what they do, but with what I had been doing with Amy already, I thought I needed more,” he said.

The injections were painful and the workouts exhausting, so Leonard was relieved when Panama’s annual carnival week celebration gave him a week of rest before the treatment resumed with another two weeks of daily injections of cells drawn from his hip bones.

On the second day of his fourth week of treatment, Leonard experienced his first noticeable improvement when he flexed the right calf muscle he had not been able to move in years. The following day he felt himself contracting the pectoral muscles in his chest.

Day by day he’s regaining strength and there have been many small, but encouraging, gains that have also been obvious to caregivers. At Four Oaks, his aides are changing the way they handle things. While transferring Leonard from bed to a chair, it’s easier for them to raise him to his feet to pivot, which can now be done with one person’s assistance rather than two.

“These are all little things, but they are huge for us,” Leonard said.

Caperton, who with help from a client at Lifestyles spent a few days in Panama learning all she could from doctors and therapists at the institute, is equally encouraged.

“I am trying to be objective, but I must say he is making drastic improvements and it excites me,” she said.

The next six months before the stem cells die hold Leonard’s greatest opportunity for improvement, and continuing his physical training will play a critical role in the treatment’s effectiveness.

Optimum recovery will come with repeat treatments, and the fundraising for Leonard’s next trip to Panama is under way. There’s a three-on-three basketball tourney being planned at the Lifestyles center, and Leonard is searching for a local business to put up a prize worthy of the tournament’s entry fee.

He’s inviting everyone to follow his progress at his Facebook page, Daniel Leonard Search for a Cure (http://on.fb.me/H6sAtf). And for anyone who wishes to help, online donations may be made at www.giveforward.com/daniellenoardstemcells.

Donations to the “Daniel Leonard Search for a Cure Fund” can also be made at any First Tennessee Bank location or by mail to First Tennessee Bank, 1500 W. State of Franklin Road, Johnson City, TN 37604.

“Hopefully, with the next treatment I’ll be able to stand,” he said. “I’m excited about it. I can’t wait to see the results.”

Great Day in Ft. Worth for Stem Cell Team

Stem cell patients and MS walk in Fort Worth

Stem Cell Institute patients participate in MS Walk 2012

Saturday, March 31 was the annual MS Walk in Ft Worth. This year, thanks to the Stem Cell Institute and some of the area stem cell patients, several of us MS sufferers and stem cell patients met for the Walk. Here’s a picture of several of us who have been to Panama, or Costa Rica, for treatments – (from L – R) Richard, Carolyn, Shelley, Carla, Judi, Holly, and me.

We wanted to give the Stem Cell Institute a presence in that sea of MS victims and caregivers. I wish all of them knew that many of us in those blue t-shirts were there walking, actually completing the whole mile, even though we were once unable to do such. I wanted to grab that microphone that the organizers were using and tell all of them “There is HOPE – it doesn’t have to be what you hear from your doctors so often. It can be more than ‘Let’s keep taking this medication so you might get worse at a slower rate’ ”

I personally never heard about the possibility of actually improving when I went to good doctors here in the US – but I chose to try the Stem Cell treatment in Panama, and I walked that mile on Saturday! A year ago, six months ago, I couldn’t have done that – but after my third trip to Panama in September, my walking, my balance, and my stamina all improved dramatically. And many of those in our group on Saturday have a similar story; some results more dramatic than others, but most all of us have seen and felt the changes that give us that Hope that all of those sufferers at the Walk are looking for.

THANKS STEM CELL INSTITUTE!

Sam Harrell
Sam in Panama

Stemedica Treats First Patient with Ischemic Allogeneic Mesenchymal Stem Cells

Stemedica Cell Technologies Press Release
The San Diego stem cell company Stemedica Cell Technologies, Inc reported treatment of its first patient as part of a 35 patient clinical trial in stroke patients. The study uses bone marrow stem cells that have been preconditioned with hypoxia and used in a non-matched manner. The trial is being conducted at the University of California San Diego and is titled “A Phase I/II, Multi-Center, Open-Label Study to Assess the Safety, Tolerability and Preliminary Efficacy of a Single Intravenous Dose of Allogeneic Mesenchymal Bone Marrow Cells to Subjects with Ischemic Stroke.”
Every year more than 800,000 Americans suffer a stroke. According to the American Heart Association, stroke is the fourth leading cause of death – costing an estimated $73.7 billion in 2010 for stroke-related medical costs and disability.
The study’s Principle investigator is Michael Levy, MD, PhD, FACS, chief of pediatric neurosurgery at Children’s Hospital San Diego (CHSD) and professor of neurological surgery at UCSD. The aim of the trial is to determine tolerance and therapeutic outcomes for intravenously-delivered adult allogeneic mesenchymal stem cells and to hopefully pave the way for a new therapeutic category of treatment for ischemic stroke. When asked about the first patient in the study, Dr. Levy said, “The treatment went smoothly; no side effects were observed, and the patient was released from the hospital the next day.”
Lev Verkh, PhD, Stemedica’s chief regulatory and clinical development officer, commented: “Many years of research and hard work by the Stemedica team culminated today in the treatment of the first patient using our uniquely designed stem cells to be effective under ischemic condition. We are proud to be the first company to initiate a study such as this under a clinical protocol approved by the U.S. Food and Drug Administration (FDA).”
Several companies are using stem cells for stroke. For example the company Aldagen is using bone marrow derived cells from the same patient. Their approach involves bone marrow extraction, purification of a selected stem cell from the bone marrow, and subsequent administration of the cell into the patients. The reason why stroke is of great interest to many companies is because recent studies have demonstrated that the brain has its own stem cells that start multiplying after a stroke. Unfortunately these stem cells that are already existing are not found in a high enough number to cause a substantial repair. The idea is that when new stem cells are added, they assist the existing stem cells in supporting the repair process.
“This clinical trial marks a significant achievement in the treatment of debilitating ischemia-related pathologies including ischemic stroke,” said Nikolai Tankovich, MD, PhD, president and chief medical officer of Stemedica. “We believe these specially designed mesenchymal stem cells are able to tolerate, survive and repair ischemic tissues caused by an infarction of the brain, heart, kidney, retina and other organs. In addition, these mesenchymal stem cells are capable of up regulating an array of important genes that are essential for the synthesis of critical proteins involved in recovery.”
Dr. Verkh continued, “Patients in this study have significant functional or neurologic impairment that confines them to a wheelchair or requires home nursing care or assistance with the general activities of daily living and have received the ischemic stroke diagnosis at least six months prior to enrollment in this study”.
The inclusion/exclusion criteria are:
Inclusion Criteria:
•Clinical diagnosis of ischemic stroke for longer than 6 months
•Brain CT/MRI scan at initial diagnosis and at enrollment consistent with ischemic stroke
•No substantial improvement in neurologic or functional deficits for the 2 months prior to enrollment
•NIHSS score between 6-20
•Life expectancy greater than 12 months
•Prior to treatment patient received standard medical care for the secondary prevention of ischemic stroke
•Adequate organ function as defined by the following criteria:
Exclusion Criteria:
•History of uncontrolled seizure disorder
•History of cancer within the past 5 years.
•History of cerebral neoplasm
•Positive for hepatitis B, C or HIV
•Myocardial infarction withing six months of study entry
•Findings on baseline CT suggestive of subarachnoid or intracerebral hemorrhage within past 12 months.
•Allergies to Bovine or Porcine products

Medistem Signs Exclusive Worldwide License With Yale University for Treatment of Type 1 Diabetes Using Stem Cells

Acquisition of Intellectual Property and Data Leads to Expansion of Medistem Therapeutic Pipeline

SAN DIEGO, CA, Mar 07, 2012 (MARKETWIRE via COMTEX) — Medistem Inc. (pinksheets:MEDS) and Yale University have signed an exclusive worldwide licensing agreement covering the generation of pancreatic islets from stem cells such as the Endometrial Regenerative Cell (ERC). These pancreatic islets have effectively treated diabetes in animal models.

Professor Hugh Taylor of Yale University, inventor of the technology, made international headlines in September 2011 when he published his findings in the peer-reviewed journal Molecular Therapy.

“Medistem is the first company to develop clinical-grade endometrial-derived stem cells and initiate trials in humans,” said Professor Taylor. “Since Medistem’s Endometrial Regenerative Cells are manufactured inexpensively, can be used as an ‘off the shelf’ product, and to date appear safe in human subjects, I am very excited to see diabetes added to the list of diseases that can potentially be treated with Medistem’s ERCs.”

Medistem is currently in two clinical trials with ERCs: One for critical limb ischemia and a second for congestive heart failure, both of which are complications of uncontrolled diabetes.

“Type 1 diabetes is a rapidly growing poorly-served market. There is great optimism that cell-based therapies can address not only pancreatic degeneration but also the underlying immunological causes,” said Dr. Alan Lewis, former CEO of the Juvenile Diabetes Research Foundation, the largest non-profit organization focused on development of new therapeutic approaches for this disease. “The ERC is the newest adult stem cell to enter clinical trials. Based on this unique source of cells, as well as their immune modulatory properties, we believe this work may be expanded into other autoimmune diseases.”

About Medistem Inc. Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia and congestive heart failure. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf . ERC can be purchased for scientific use through Medistem’s collaborator, General Biotechnology http://www.gnrlbiotech.com/?page=catalog_endometrial_regenerative_cells .

Cautionary Statement This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Medistem Inc. to Add Kidney and Lung Failure to Clinical Trials of Endometrial Regenerative Cells (ERC) Stem Cells in Russia

SAN DIEGO, CA and PORTLAND, OR, Mar 05, 2012 (MARKETWIRE via COMTEX) — Medistem Inc. (pinksheets:MEDS), in partnership with its Russian licensee, ERCell, announced the signing of a letter of intent* to begin clinical trials using Medistem’s Endometrial Regenerative Cells (ERC) stem cells for renal, lung and peripheral artery disease. Trials will be conducted in the S.M. Kirov Military Medical Academy in St. Petersburg, Russia. Under the agreement, Medistem, ERCell and the Academy will work together to a) Design and obtain approval for clinical trials; b) Provide training and execute the trials; and c) Identify opportunities for commercialization of the ERC product through existing military and governmental programs.

Under the license agreement, Medistem receives cash and royalty revenues from Russian developmental activities as well as all the data gathered from the trials. According to the agreement, work performed by ERCell will be conducted according to international “Good Clinical Practices” (GCP) so the data gathered can be used for Russian registration as well as to support US FDA submissions.

“At Medistem, our philosophy has always been to follow the data. We aim to be as aggressive as possible, to obtain as much data as possible, as quickly as possible,” stated Thomas Ichim, CEO of Medistem. “We are especially optimistic about the possibility of obtaining human data in renal failure patients, something that we otherwise would not have pursued at this stage if it weren’t for the support of the S.M. Kirov Military Medical Academy.”

“As the Medistem licensee for Russia and CIS (Commonwealth of Independent States), ERCell is committed to advancing our programs using as many non-dilutive means as possible,” said Tereza Ustimova, CEO of ERCell. “By partnering with the best institutes in the country, we are committed to making ERCell Russia’s premiere universal donor adult stem cell company.”

S.M. Kirov Military Medical Academy conducts research in the following areas: metabolic derangements of cardiovascular pathology, nanotechnologies in biology and medicine, stem cells as a basis for the treatment of internal organs and blood diseases, blood circulation, vegetative nervous system and high-tech methods of diagnosis and treatment.

“We are highly impressed by the fact that the Endometrial Regenerative Cell (ERC) is the newest stem cell product to enter clinical trials. By the higher growth factor production ability compared to other types of stem cells, we are very eager to begin clinical trials,” said Oleg Nagobovich, M.D., Chief of the Research Center, S.M. Kirov Medical Military Academy. “We feel our work will complement the ongoing work at the Backulev Center addressing heart failure by Medistem/ERCell.”

*Letter of intent issued by Ministry of Defense, dated 2/24/12, No. 411A/119

About Medistem Inc. Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf . ERC can be purchased for scientific use through Medistem’s collaborator, General Biotechnology http://www.gnrlbiotech.com/?page=catalog_endometrial_regenerative_cells .

Cautionary Statement This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Contact:
Thomas Ichim
Chief Executive Officer
Medistem Inc.
9255 Towne Centre Drive, Suite 450
San Diego, CA 92122
858 349 3617
858 642 0027

www.medisteminc.com twitter: @thomasichim

SOURCE: Medistem Inc.

Autologous stromal vascular fraction therapy for rheumatoid arthritis: rationale and clinical safety.

Int Arch Med. 2012 Feb 8;5(1):5. [Epub ahead of print]

Paz Rodriguez J, Murphy MP, Hong S, Madrigal M, March KL, Minev B, Harman RJ, Chen CS, Timmons RB, Marleau AM, Riordan NH.

ABSTRACT: Advancements in rheumatoid arthritis (RA) treatment protocols and introduction of targeted biological therapies have markedly improved patient outcomes, despite this, up to 50% of patients still fail to achieve a significant clinical response. In veterinary medicine, stem cell therapy in the form of autologous stromal vascular fraction (SVF) is an accepted therapeutic modality for degenerative conditions with 80% improvement and no serious treatment associated adverse events reported. Clinical translation of SVF therapy relies on confirmation of veterinary findings in targeted patient populations. Here we describe the rationale and preclinical data supporting the use of autologous SVF in treatment of RA, as well as provide 1, 3, 6, and 13 month safety outcomes in 13 RA patients treated with this approach.

PMID: 22313603 [PubMed – as supplied by publisher]

FULL TEXT: http://www.intarchmed.com/content/pdf/1755-7682-5-5.pdf

Stem Cells in Theory and Practice

Dr. Douglas J. Herthel of Alamo Pintado Equine Medical Center in Los Olivos, California was one of the first practitioners to use stem cells, beginning in 1995. Herthel used stem cells from bone marrow to treat ligament and tendon injuries in horses. The results from these treatments were so promising that he began using stem cells to treat other various conditions as well.

The treatment has since been used to treat common equine issues such as laminitis, as well as spinal cord injuries. A dramatic example is that of a donkey who suffered a spinal cord injury as was quadriplegic. The donkey regained full function following a stem cell treatment. “It’s certainly an exciting time to be in the veterinary field,” Dr. Herthel said. “You’re talking about potential cures for things, rather than just palliation. And you’re also talking about maybe less pharmacological use.” Adair, an Irish Draught Cross horse had a very severe case of chronic forelimb laminitis, so severe in fact, that without a dramatic improvement he would have to be euthanized. Adair was treated with stem cells in early 2010, 48 hours following treatment he appeared to be in less pain and six weeks later, his hooves had grown almost halfway back.

Dr. Johnson, Adair’s owner, started using stem cells in 2001 to treat tendinitis in racehorses. “The funny thing about science or lack thereof in clinical practice is you try something for what has historically not been an easy problem to fix, and you have some limited success, and you carry on,” Dr. Johnson said. Some doctors performing stem cell treatment extract and process the cells in house, while others order stem cells from another horse. Many doctors send tissue samples to Vet-Stem Inc. or other laboratories to process the cells. Dr. Robert J. Harman, Vet-Stem’s chief executive officer, said his company has processed stem cells from fat samples for about 8,000 patients since starting in 2004. About 4,000 veterinarians have completed the Vet-Stem credentialing course on stem cells as a therapy. “Once they’ve been through the course, most people are pretty strong believers that this has a place in veterinary medicine,” Dr. Harman said.

Vet-stem treats mostly horses, as well as some dogs and cats. The treatments for horses are generally for tendon and ligament injuries, while most dogs receive treatment for arthritis. Many of the dogs treated are athletes, but some are also family pets. While this is good news for people who want to see the best treatment given to man’s best friend, others caution against getting too excited over the current stem cell therapies.

Dr. Brennen A. McKenzie of Adobe Animal Hospital in Los Altos, California believes that the evidence of efficacy is preliminary. He believes that the clinics should offer the treatment as an experimental treatment in the form of a clinical trial.

A new organization, the North American Veterinary Regenerative Medicine Association, is seeking to act as a clearinghouse of information on stem cells in veterinary medicine, said Dr. Owens, director of the UC-Davis Regenerative Medicine Laboratory and NAVRMA secretary-treasurer. Hundreds of practitioners and researchers have expressed interest in being a member of the NAVRMA, and the first meeting will be in June.

The FDA has the authority to regulate the use of stem cells in animals, as they have done in humans. However, as of yet there are no specific regulations regarding the treatment of animals with stem cells.

Ischemic Stroke Recovery May Be Improved Using Stem Cell Therapy

At the American Heart Association’s International Stroke Conference in New Orleans, two studies suggested that stem cell therapy improves functional recovery following subacute ischemic stroke and may aid in regenerative therapy.

One hundred and twenty subacute ischemic stroke patients were treated with mononuclear bone marrow-derived stem cells. Patients ranged in age from eighteen to seventy five years old. All were treated within seven to thirty days of suffering their strokes. Each patient was assessed using the Barthel index. The results showed that seventy three percent of patients who were treated with stem cells attained a Barthel score of greater than or equal to 60, which is the measure for assisted independence. Only sixty one percent of the patients who were not treated with stem cells achieved similar scores. All patients were tumor free at one year. This study was performed by Kameshwar Prasad, M.B.B.S., M.D., from the All India Institute of Medical Sciences in New Delhi.

In a separate study from the All India Institute of Medical Sciences in New Delhi, Rohit Bhatia, M.D. examined autologous mononuclear mesenchymal stem cell therapy in forty stroke patients who were recruited for the study from three months to one year after their strokes. Patients who were treated with stem cells showed significant improvement based on the Barthel index. No adverse reactions were observed. Dr. Bhatia concluded that intravenous administration of mononuclear and mesenchymal stem cells is safe, feasible and likely facilitates behavioral recovery following stroke.

Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study

Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S.

Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.

Abstract

BACKGROUND:
More than half of patients with multiple sclerosis have progressive disease characterised by accumulating disability. The absence of treatments for progressive multiple sclerosis represents a major unmet clinical need. On the basis of evidence that mesenchymal stem cells have a beneficial effect in acute and chronic animal models of multiple sclerosis, we aimed to assess the safety and efficacy of these cells as a potential neuroprotective treatment for secondary progressive multiple sclerosis.

METHODS:
Patients with secondary progressive multiple sclerosis involving the visual pathways (expanded disability status score 5·5-6·5) were recruited from the East Anglia and north London regions of the UK. Participants received intravenous infusion of autologous bone-marrow-derived mesenchymal stem cells in this open-label study. Our primary objective was to assess feasibility and safety; we compared adverse events from up to 20 months before treatment until up to 10 months after the infusion. As a secondary objective, we chose efficacy outcomes to assess the anterior visual pathway as a model of wider disease. Masked endpoint analyses was used for electrophysiological and selected imaging outcomes. We used piecewise linear mixed models to assess the change in gradients over time at the point of intervention. This trial is registered with ClinicalTrials.gov, number NCT00395200.

FINDINGS:
We isolated, expanded, characterised, and administered mesenchymal stem cells in ten patients. The mean dose was 1·6×10(6) cells per kg bodyweight (range 1·1-2·0). One patient developed a transient rash shortly after treatment; two patients had self-limiting bacterial infections 3-4 weeks after treatment. We did not identify any serious adverse events. We noted improvement after treatment in visual acuity (difference in monthly rates of change -0·02 logMAR units, 95% CI -0·03 to -0·01; p=0·003) and visual evoked response latency (-1·33 ms, -2·44 to -0·21; p=0·020), with an increase in optic nerve area (difference in monthly rates of change 0·13 mm(2), 0·04 to 0·22; p=0·006). We did not identify any significant effects on colour vision, visual fields, macular volume, retinal nerve fibre layer thickness, or optic nerve magnetisation transfer ratio.

INTERPRETATION:
Autologous mesenchymal stem cells were safely given to patients with secondary progressive multiple sclerosis in our study. The evidence of structural, functional, and physiological improvement after treatment in some visual endpoints is suggestive of neuroprotection.

FUNDING:
Medical Research Council, Multiple Sclerosis Society of Great Britain and Northern Ireland, Evelyn Trust, NHS National Institute for Health Research, Cambridge and UCLH Biomedical Research Centres, Wellcome Trust, Raymond and Beverly Sackler Foundation, and Sir David and Isobel Walker Trust.