Stem Cell Therapy Aids the Return of Lava Man

Lava Man is a race horse that has had quite a career: he has earned more than $5.2 million and was considered one of the top racehorses in North America. Unfortunately, the recent past has not been to kind to him. Last year he finished last in the 2008 Eddie Read Handicap at Del Mar, and previous to that he has lost a series of six races in a row. Lava Man had arthritis in the joints in his ankles and a small fracture in his left front leg, Being 7 years old at that time, his owners decided it was time for Lava Man to retire.

However it seems like Lava Man’s fortunes may have changed. 17 months after his last race, he is scheduled to make a come-back this Saturday at Hollywood Park in the Native Diver Handicap. The horse was treated with his own fat derived stem cells by Dr. Doug Herthel, who stated:

"The trainer is the only one who can tell you how he’s going to run Saturday, but as far as the way he looks and based on our experience with other horses, theoretically, he should be much better than he was," said Dr. Doug Herthel, who treated Lava Man at the Alamo Pintado Equine Medical Center in Los Olivos, Calif.

"We think of those stem cells as little paramedics," Herthel said. "They go in and they help; they enhance the health of the cartilage." Dr. Herthel stated that significant improvements have occurred in Lava Man following stem cell therapy. He also stated that if Lava Man makes a triumphant return due to stem cells, this would not be the first case of this occurring. He cited the example of Ever A Friend , a 6-year-old horse, who was injured in May 2008, received the same type of fat derived stem cells as Lava Man and returned to win an allowance race and finish second in the Grade I Citation Handicap.

The fat derived stem cells that are being used in the treated of horses appear to work through several mechanisms. On the one hand they can become new cartilage and bone tissue directly, while on the other hand the stem cells producing various growth factors that accelerate the process of healing. Another method, that is more debated amongst scientists, is that the stem cells can actually produce enzymes that degrade scar tissue and allow replacement with functional tissue.

Human use of fat stem cells has been performed for multiple sclerosis (Riordan et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009 Apr 24;7:29) and is currently being investigated for other conditions such as heart failure and rheumatoid arthritis.

TaiGen Biotechnology Reports Phase I and Preclinical Data for TG-0054 at the 2009 American Society of Hematology Meeting

Subsequent to the success of Mozobil, a small molecule chemical antagonist of CXCR4, several companies have been working at increasing the number of available means of mobilizing patient stem cells. One recent example is TaiGen Biotechnology Co., Ltd, which announced today the presentation of Phase I and preclinical data its CXCR4 antagonist TG-0054, at the ASH Annual Meeting held in New Orleans, the US, from December 5 to 8, 2009.

Date will be presented from a randomized, double-blind, placebo-controlled, sequential ascending single intravenous dose Phase I study. According to the press release, "TG-0054 exhibited excellent and favorable safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) profile."

The study was critical because it establishes a maximally tolerated dose that can be used for efficacy-finding Phase II clinical trials. One such trial, "A Phase II, Randomized, Open-Label, Multi-Center Study to Evaluate the Safety, Pharmacokinetics, and Hematopoietic Stem Cell Mobilization of TG-0054 in Patients with Multiple Myeloma, Non-Hodgkin Lymphoma or Hodgkin Disease" will begin to enroll patients in December, 2009.

Quite interestingly, the data presented will included details of the mechanism of mobilization, as well as the surprising finding that not only were hematopoietic (blood making) stem cells mobilized into circulation, but also stem cells for the blood vessels, called "circulating endothelial progenitor cells (EPC)."
The ability of TG-0054 to cause mobilization of EPC may support its use in other areas besides hematology. For example, it is known that patients with ischemic heart disease have low circulating EPC. By increasing the number of EPC, the body may be able to grow new blood vessels around the areas of ischemia, and thus inhibit progression, or even reverse the lack of oxygen to the myocardium.

To date, the classically used stem cell mobilizer, G-CSF, has been administered in patients with heart failure for increasing blood vessel production, as well as stimulation of endogenous regenerative mechanisms. Clinical trial results have been mixed, which may be due to other underlying factors associated with cardiac degeneration. By having an arsenal of several stem cell mobilizers, each having unique properties, future studies may be able to create a treatment protocol in which the patient is given drugs that activate stem cells, and the stem cells then home to the area where the body needs them.

Stem Cell Derived Neurons for Research Relevant to Alzheimer’s and Niemann-Pick Type C Diseases

One of the major hurdles to curing diseases is finding ways in which to test potential cures (or treatments) without having to use people, or even animals. One way of trying to cure a disease is to associate it with a gene or series of genes that are either mutated or abnormally acting. When the cause of the disease is known, then scientists use computers to generate molecules that theoretically would inhibit the disease. These are then tested in the test-tube, and subsequently in animals having the disease. If it works on animals and is relatively non-toxic, then Phase I human trials are conducted to assess safety and what dosage can be tolerated.

Subsequently Phase II trials are performed to assess whether there is an effect of the drug on the disease. Finally Phase III trials are conducted, which assess the efficacy of the drug but in a manner that is double blind and placebo controlled. If the drug is successful, then the FDA or EMEA (in Europe) grants approval. The other way to approach diseases is to randomly screen compounds. The issue with random screening is that one needs to have a replica of the disease in a test tube that can be rapidly assessed whether there is or is not an effect.

The contributive role of stem cells in human medicine has to some extent been underestimated. For example, while it is well-known that embryonic stem cells have not been used in humans to date, embryonic stem cells have contributed tremendously to human medicine. Mouse embryonic stem cells are the key to development of genetically engineered animals in which a gene of interest to humans is either made to be artificially highly expressed in the animal (called transgenic animals), or in which the animal is selectively depleted of the gene of interest (called knockout animals). The development of genetically engineered animals for human testing was the basis of identifying numerous "Achilles Heal’s" of diseases. For example, using knockout mice it was demonstrated that the molecule TNF-alpha is essential for animals to get rheumatoid arthritis. The development of antibodies to TNF-alpha has heralded a revolution in the therapeutic of not only rheumatoid arthritis but also several other inflammatory diseases such as Crohn’s Disease and Psoriasis.

Today the group of Lawrence B. Goldstein, Ph.D., of the University of California, San Diego, School of Medicine and Howard Hughes Medical Institute (HHMI) presented data at the American Society for Cell Biology (ASCB) 49th Annual Meeting, in San Diego describing a new "model" of disease that they developed. The scientists wanted to develop means of testing drugs against the neurological disorders Alzheimer’s disease (AD) and the rarer but always fatal disease, Niemann-Pick Type C (NPC).

In order to do this, the investigators needed to obtain the cells that develop the disease, specific types of neurons, from individuals with the disease. The problem with this approach is that it is in general very difficult to extract neurons, and it is even more difficult to grow them from patients with AD or NPC. To overcome this, stem cells were created from the skin of patients with these diseases and then the stem cells were made into disease-specific neurons by treatment with growth factors. Previous to this, researchers had to perform experiments in neurons from fruitflies which obviously have many differences as compared to humans.

According to Dr. Goldstein, who is a professor in the Department of Cellular & Molecular Medicine, an HHMI investigator and director of UC San Diego’s Stem Cell Program "Such research may yield an understanding of what components of sporadic disease are defined by genetic characteristics"

Studies are currently being performed using these "in vitro" models of disease to assess random chemical compounds, a process called "screening" in order to identify potential drugs that may be useful in these conditions.

Stem cells may hold the key to the fight against HIV

Substantial progress has been made in the area of stem cells. Despite the Bush Administration’s 8 1/2 year ban on federal funding for embryonic stem cell research, and President Obama’s recent reversal, adult stem cell therapies have been making progress in terms of clinical implementation. This may be related to the safety concerns of embryonic stem cells, which have included differentiation into undesired tissues, as well as cancer. In contrast, adult stem cells have been used for more than 4 decades in the area of bone marrow transplantation and for over a decade in other areas. Primarily, non-bone marrow transplant studies have been focused in the area of heart failure, however smaller studies have investigated the use of stem cells in liver and kidney failure.

The field of stem cell therapies has recently been expanded. In a study published December 7in the medical journalPloS ONE, scientists from the University of California Los Angeles reported that human blood cells derived from adult stem cells can be engineered into cells that can target and kill HIV-infected cells – a process that could potentially be used against a range of chronic viral diseases.

The leader of the study, Dr. Scott G. Kitchen, Assistant Professor of Medicine in the Division of Hematology and Oncology at the David Geffen School of Medicine at UCLA and a Member of the UCLA AIDS Institute stated "We have demonstrated in this proof-of-principle study that this type of approach can be used to engineer the human immune system, particularly the T-cell response, to specifically target HIV-infected cells," Additionally, he commented on the possibility of future studies. "These studies lay the foundation for further therapeutic development that involves restoring damaged or defective immune responses toward a variety of viruses that cause chronic disease, or even different types of tumors."

Possible methods of manipulating blood cells to make them resistant to HIV infection includes genetically altering proteins called receptors. T cells have a specific receptor called CXCR5 which when mutated cannot be infected with HIV. Certain subsets of the human population who are resistant to HIV have this mutation in CXCR5, but also have normal T cell activities. One of the possible genetic alterations that can be performed in patients with HIV is to induce a similar CXCR5 mutation to endow resistance. Stem cell types that could be used include bone marrow, cord blood, or expanded peripheral blood stem cells.

Cleveland Clinic receives $2.75M grant to study stem cell use in treating MS

The use of stem cells for multiple sclerosis can be categorized into two main approaches. The first involves transplantation of blood making stem cells, called hematopoietic stem cells, after the immune response of the patient is destroyed. This is performed because multiple sclerosis is an immunological disease in which the T cells are attacking the "insulator" of the nerves, a protein called myelin basic protein. By destroying the immune system and subsequently adding stem cells that will make a new immune system, this approach "resets the clock" and has yielded success in early clinical studies. Unfortunately, the problem with destroying the patient immune system is that they undergo a period of immune compromise during which they are susceptible to bacterial, fungal, and viral infections. The second method of using stem cells in multiple sclerosis is to administer a type of stem cell called mesenchymal stem cells, which actually reprogram the pathogenic T cells so that they slow down their immune attack. Mesenchymal stem cells also possess two other important properties: a) they induce the generation of T regulatory cells, which block pathologic T cells from attacking myeling&; and b) they help to regenerate the injured neurons through producing growth factors, as well as becoming new neurons.

For the study of this second approach, the Cleveland Clinic has received a $2.75 million federal grant from the Department of Defense. This is a 4-year grant that will fund a 24-patient study which will be conducted by the Center for Stem Cell and Regenerative Medicine. The study will investigate patients with relapse-remitting MS that are still able to walk but have moderate to severe disability. Collaborators in the study will include the stem cell company Athersys Inc., Case Western Reserve University, the Clinic, Ohio State University and University Hospitals Case Medical Center.

"Mesenchymal stem cells are primitive cells in the bone marrow that have a wide range of effects that decrease the activity of immune cells which are over-active in MS," said Dr. Jeffrey Cohen of the Clinic’s Mellen Center for Multiple Sclerosis Treatment and Research. "In addition, in numerous laboratory studies, MSC’s were able to migrate from the blood in to areas of inflammation or injury in the nervous system and reduce damage by developing into cells resembling neurons (nerve cells) and glia (support cells) and, probably more importantly, by creating a tissue environment that encourages intrinsic repair mechanisms," he said.

The proposed study is similar to work performed by the Cellmedicine (www.cellmedicine.com ) stem cell treatment clinic which has published on 3 patients with MS undergoing a recovery after treatment with their own fat derived stem cells, without immune suppression. This was published with collaborators at the company Medistem Inc, the University of California San Diego, Indiana University, the company Vet-Stem and the University of Utah. The publication is freely available at this link www.translational-medicine.com/content/7/1/29.

The use of fat as a source of mesenchymal stem cells for treatment of MS is appealing for several reasons. Firstly, the high content of these stem cells in the fat makes expansion of the cells unnecessary for certain uses. The process of cell expansion is technically complex and can only be performed at specialized institutions with experience in cell processing. Secondly, fat contains high concentrations of T regulatory cells, therefore in addition to administering mesenchymal stem cells, the presence of these T cells is theoretically beneficial since they are known to inhibit pathological immune responses. An explanation of the importance/relevance of T regulatory cells in fat is provided in this video:

Click play button

Other cells found in fat include endothelial progenitor cells (EPC), these are useful for healing injured tissue by creating new blood vessels, a critical part of the healing process.

Researchers Launch Phase II Trial of Stem Cells and Acute Heart Attack

Doctors at the University of Texas Medical School at Houston have announced initiation of an efficacy-finding study in the area of heart failure using a "universal donor" stem cell product called "Prochymal". This cell therapy drug is under development by the company Osiris Therapeutics and is the subject of substantial scientific interest internationally. Prochymal has made it to Phase III trials in the area of Graft Versus Host Disease, a side effect of bone marrow transplantation, however, data was not sufficiently strong to warrant FDA approval. Prochymal is made from the bone marrow mesenchymal stem cells of healthy human volunteers. It is a unique stem cell product in that it does not require matching with the recipient.

Data from Phase I clinical trial of Prochymal have been published in the Journal of the American College of Cardiology. The researchers involved in the Phase I trial reported that patients who received Prochymal intravenously after a heart attacked did not have adverse effects associated with the stem cell infusion. Therapeutic benefits were observed in the treated but not control patients, including reduction in number of arrhythmias, improved heart and lung function, and improvement in overall condition.

"We are able to use a stem cell product that is on the shelf without prior preparation of anything from the patient, and this product appears to be able to help the heart muscle recover after a heart attack," said Ali E. Denktas, M.D., the trial’s Houston site principal investigator and assistant professor of cardiology at the UT Medical School at Houston. "This means patients have the potential to recover quicker with less risk of an immediate secondary attack."

The first patient for the Phase II study at the Houston site was recruited today. The heart attack victim Melvin Dyess, 49, received an intravenous infusion of either the stem cells or placebo as part of the protocol of the double-blind study. The procedure took place at the Memorial Hermann Heart & Vascular Institute-Texas Medical Center. Denktas said UT Medical School researchers will continue to enroll willing patients into the Phase II study who are admitted to Memorial Hermann-Texas Medical Center. Neither patients nor their physicians know whether they received the stem cell drug.

Stem cells from umbilical cord used for cerebral palsy

Cerebral palsy is a major health problem, affecting approximately 1 in 500 newborns. It is caused by damage to the brain by lack of oxygen before birth. The scientific rationale for the use of stem cells for this condition has been discussed previously in the video Stem Cell Therapy for Cerebral Palsy.

In a recent news announcement, a case of a child in Singapore with cerebral palsy that was treated with their own cord blood stem cells was discussed.
"It is quite a safe procedure. It is like a standard blood transfusion, except that you are using the cord blood cells that were stored. So there is no risk of a reaction, apart from perhaps minor hypersensitivity reactions, as in all blood transfusions," said Dr Keith Goh, neurosurgeon, Mount Elizabeth Hospital.

After the administration, the patient, 2-year-old Georgia Conn is reportedly calmer, with a decrease in constant crying an seizures. The parents, Michael and Louise Conn, previously stored Georgia’s umbilical cord blood cells. "Within two days, Georgia was noticeably happier. Just instantly more smiley, chatty and more energetic. That was the first real indication that something was going on," said Louise Conn. "And since then we all feel, and all her therapists feel, that her muscle tone has reduced, which is enabling her to achieve a lot more within her therapy sessions," she added.

Theoretically the risks of using a patient’s own cord blood stem cells are minimal since they are not manipulated, and are of the same genetic make up as the patient. However there are certain considerations, for example, "are there enough cells" to actually cause a meaningful effect? Additionally, what if the patient needs the cord blood cells later in life?

Other approaches to cord blood stem cell therapy include using cells from non-related cords, as well as expansion of the cord blood stem cells before using. The rationale for the non-related use of cord blood has been previously published (Riordan et al. Cord blood in regenerative medicine: do we need immune suppression? J Transl Med. 2007 Jan 30;5:8). Expansion of cord blood stem cells has previously been attempted by the companies Viacell and Aastrom. Although the technology is still a work in progress, some clinical trials have been performed with expanded cord blood cells in the area of hematological malignancies such as leukemias.

Adipose Tissue-Derived Stem Cells Inhibit Neointimal Formation in a Paracrine Fashion in Rat Femoral Artery

Fat tissue is becoming increasingly recognized as a major contributor to the biochemical balance in the body. For example, during times of obesity, fat tissue produces compounds such as leptin that suppress, or attempt to suppress appetite. Fat tissue contains numerous cell types that control inflammation such as T regulatory cells, and alternatively activated macrophages (Riordan et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009 Apr 24;7:29). Additionally, fat tissue contains several populations of stem cells, including mesenchymal stem cells, and hematopoietic stem cells.

In the study published today, fat mesenchymal stem cells were isolated from rats and tested for ability to promote healing of the endothelium, which is the lining of the blood vessels. The endothelium is very important because damaged endothelium is believed to be the cause of atherosclerosis.

The first set of experiments that the scientists performed was to try to “differentiate” or transform the fat mesenchymal stem cells into endothelial cells in the test tube. Treatment of the stem cells with an optimized mix of chemicals, called “endothelial growth media” resulted in cells that resembled endothelium based on expression of proteins on the cell surface. Specifically, the “home grown” endothelial cells expressed the markers Flt-1 and responded to SDF-1, a protein known to attract endothelial cells.

In order to mimic the condition of atherosclerosis development, a wire was inserted into the femoral artery and used to “scratch” the endothelial surface so as to produce an injury. In animals that did not receive stem cells, the injury resulted in a lesion that resembled the atherosclerotic plaque. When stem cells that were differentiated into endothelial cells were administered in the injured area, the lesion size was reduced, or in some animals completely absent.

Most interesting in the study was that the differentiated endothelial cells did not incorporate themselves into the existing blood vessel endothelium. Specifically, the injected cells could have been injected even outside of the endothelium and prevention of injury would be seen. These data suggest that the endothelial cells generated in vitro seem to work by producing therapeutic factors that accelerate healing, but not necessarily by replacing the function of the old endothelium. One interesting next step of this research may be to purify the growth factors made, and administer them instead of stem cells as a therapeutic approach to prevention of atherosclerosis.

Stem Cells May Improve Heart Bypass Results

The bone marrow is conventionally thought of as the location in the body where blood is made. Production of blood is regulated by the body’s needs and originates from a specialized type of stem cell called the “hematopoietic” stem cell.

There have been numerous studies demonstrating that the bone marrow also contains stem cells that are capable of regenerating injured heart tissue. Controversy exists as to which specific type of bone marrow stem cell is better at regenerating heart tissue, however the concept is not new. Back in 1999 researchers from the University of Toronto in Canada demonstrated that subsequent to induction of cardiac injury in laboratory rats, the injection of bone marrow stem cells that have been treated with a chemical agent (5-azacytidine) would cause significant recovery of the injury [1]. Treatment with the chemical agent resulted in cells that resembled heart cells in the test-tube, which were subsequently transplanted into the animal.

Later studies showed that for certain types of heart injury it was not necessary to treat the bone marrow stem cells with chemical agents, but that simple administration of these cells, either directly into the heart [2], or intravenously [3], was able to cause a therapeutic response.

Today at the American Heart Association’s Annual Meeting in Orlando Florida researchers from the University of Rostock presented data using stem cells from the bone marrow together with coronary artery bypass surgery in treating patients with heart failure due to poor circulation.

The researchers presented data on 10 patients that were administered a purified population of bone marrow stem cells. These stem cells were selected using a magnetic-based approach for expression of the protein CD133, which is associated with enhanced stem cell activity. The purpose was to increase circulation by causing formation of new blood vessels, as well as possibly increasing ability of the heart muscle to regenerate.

The study demonstrated efficacy in the treated patients based on increase cardiac muscle contraction ability as compared to patients that had bypass surgery but did not receive stem cells. However the number of subjects was too small to draw definitive conclusions. No treatment associated adverse effects were noted.

1. Tomita, S., et al., Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 1999. 100(19 Suppl): p. II247-56.

2. Barile, L., et al., Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart. J Cell Mol Med, 2009.

3. Krause, U., et al., Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart. Stem Cells Dev, 2007. 16(1): p. 31-7.

Use of Frozen Stem Cells Successful in Heart Failure

There are several types of stem cell therapy that are in development. They can be broadly broken down into cells that come from the same patient, called autologous, and cells that derived from another source, called allogeneic. Autologous stem cells have the advantage not causing worries regarding immune rejection. Unfortunately, in many conditions that require stem cell therapy, such as peripheral artery disease, or coronary heart disease, the original stem cell pool in the patient is depleted. This is because on the one hand the body is constantly using the stem cells to try to heal itself, and on the other hand, there is an underlying inflammation in the conditions mentioned that suppress stem cell activity. Therefore, in some situations it is better to use "fresh" stem cells from another donor.

Mesenchymal stem cells can be extracted from bone marrow, fat, and several other sources. In contrast to the current dogma (which appears to be scientifically incorrect) that stem cells that make blood can not be transplanted without immune suppression, the current thinking for mesenchymal stem cells is that immune suppression is not needed when they are transplanted. Part of the reason for this is that mesenchymal stem cells have been published in many papers to actually "immune modulate". In other words, mesenchymal stem cells appear to have the ability to reprogram the immune system so as to not destroy them, but at the same time they allow the immune system to continue performing its usual function of destroying pathogens.

In a recent paper (Chin et al. Cryopreserved mesenchymal stromal cell treatment is safe and feasible for severe dilated ischemic cardiomyopathy. Cytotherapy. 2009 Nov 2) the use of mesenchymal stem cells was evaluated after the cells have been stored frozen. The importance of this is that an ideal stem cell treatment would be a "universal donor" stem cell "drug" in that cells could be shipped to the point of care frozen and used in the convenience of a doctor’s office, without the need for expensive equipment that is currently a requirement in the medical practice of stem cell therapy.

In the publication the scientists treated three patients with dilated cardiomyopathy with mesenchymal stem cells that were previously frozen. Stem cells were injected directly into the heart muscle as the patients were undergoing coronary artery bypass surgery. All three patients responded better than what would have been expected had they undergone surgery alone in terms of cardiac function, ejection volume, and reduction of scarring. Although the study was uncontrolled and therefore efficacy data is not solid, the fact that the procedure was performed safely, without adverse effects at 1-year follow-up suggests that more studies need to be performed to evaluate efficacy of this approach.