Stem-Cell Therapy: The All Encompassing Cure?

Science fiction was once the genre that best fit stem cell therapy. But for patients suffering from conditions as varied as cancer, heart disease, broken bones, and paralysis, stem cell therapy may soon become science fact.

Stem cells are the building blocks of our bodies that have not yet been assigned special tasks. Think of them as blank microchips before they have been programmed. Stem cells can turn into a variety of different cells, from a heart cell to a nerve cell; given particular chemical signals they can be transformed into anything.

Adult stem cells exist in a wide range of tissues including bone marrow, muscle, the brain and liver. They are already halfway down the career path to becoming a certain type of cell.

Around 600 clinical trials are presently underway worldwide involving stem cells. The UK looks to be a center for more research and may perhaps even set the pace for everyone one else.

New uses for stem cells include treatment for diseases that are major killers and cause long-term disability. For instance, bone-marrow transplants, used for some time as a treatment for leukemia, may soon be replaced with stem cell therapies. Other potential uses of stem cells range from creating new faces and hair, to growing sperm, building replacement limbs, growing new heart cells, and growing new retina tissue for the visually impaired.

Bones
Splints and bandages or casts remain the status quo as treatment for broken bones. This has not changed for many centuries. There could be a shake-up in treatment methods soon as clinical trials are underway evaluating stem cells and their capacity to mend fractured bones. Researchers are looking at the notion of repairing fractures with stem cells and as a growth factor to accelerate bone healing. Osteoporosis, which causes brittle bones, is also a prospective candidate for therapeutic stem cell treatment. Eventually leading to osteoporosis, bone loss exceeds production as we age. Stem cell therapy could restore the balance.

Heart disease
Used in trials to tackle the damage caused by a heart attack, stem-cell therapy is already producing results as well as demonstrating the potential to grow new blood vessels to get around blockages. In the UK, almost three million people have heart disease. Limiting the quantity of damage, growing new heart muscle, and increasing the pumping ability of the heart is the idea behind administering stem cell injections after a heart attack. A second goal, a so-called grow-your-own bypass, involves injecting stem cells to grow new blood vessels and re-route blood and oxygen around damaged areas of the heart.

Plastic Surgery
Stem cells have the potential to make radical changes in this area. Already used on a small number of patients, researchers hope that stem cells can be injected on to specially shaped scaffolds in order to help fill defects in the face. Stem cells taken from the hip bone to close the bone defect in cleft palate is also being investigated by dental researchers at the University of Brescia in Italy.

Dental
The most tantalizing image of stem-cell potential in dentistry is growing teeth, however changes are closer in other areas. Nippon Dental University researchers in Japan have shown that injecting stem cells into the area where a tooth has been extracted can strengthen the bone and support surrounding healthy teeth, while Orthodontists in Naples have found they can get stem cells from dental pulp in extracted molars.

Brain Injury
There is currently no therapy to reverse the effects of brain injury, but studies on animals have shown that stem cells from bone marrow can improve outcomes. Around one in four children who suffer brain injury die as a result. A clinical trial involving children aged five to 14 with a serious head injury has begun at the University of Texas. The hope is that the stem cells will help with repairs. Within 36 hours of injury, the children will be given injections of stem cells to see how it affects their recovery.

Rheumatoid Arthritis
Rheumatoid arthritis, where the immune system attacks healthy tissue, has been treated with stem-cell therapy. Around 700 patients have been treated with stem cells for this illness along with other autoimmune diseases. In this therapy, the old marrow is removed, chemotherapy is given to zap any remaining cells, and stem cells are used to build a new immune system. Research at Leiden University in Holland shows that in about one in three cases, remission has been achieved. Immunologists in America have reported the first case of a woman being treated with stem cells from her sister as opposed to most cases, where the patient’s own cells are used. The 52-year-old was in remission and not needing any drugs only a year after transplantation.

Cancer
Cancer is the disease against which stem-cell therapy has been most widely used. Leukemia treatment is especially important, as success depends on getting rid of cancerous white blood cells and replacing them with healthy ones – usually achieved through a bone-marrow transplant. With more than 400 clinical trials under way, the use of stem cells to tackle cancer has been extended, almost every kind of malignancy is being looked at. In many of the trials, those cells that are killed by the use of chemotherapy are replaced with stem cells.

Diabetes
With type one diabetes, which usually develops in childhood, the body does not produce its own insulin and daily injections are needed. The aim of stem-cell therapy is to replace those insulin producing immune cells that have been destroyed by the body’s immune system. Patients are being given chemotherapy and then infused with stem cells from bone marrow in a trial being run by Northwest University in Chicago: “We hypothesized that reprogramming the immune system will stop immune aggression to the insulin-producing cells, allowing their regeneration,” say researchers.

Paralysis
Superman actor Christopher Reeve, paralyzed in a horse-riding accident, was one of the leading campaigners for stem-cell research. Scientists are reporting success with small numbers of paralyzed patients, although large clinical trials are still in the future. The idea behind the therapy is that the stem cells can grow into nerve cells to replace those that are permanently damaged, and bridge the gap between the severed pieces of the spinal cord. Researchers in Argentina are reporting the restoration of movement in two patients.

Crohn’s Disease
Thought to be caused by immune cells attacking tissue, Crohn’s disease is a bowel disorder. A trial is looking at the use of chemotherapy followed by an infusion of the patient’s own stem cells. “The purpose of the chemotherapy is to destroy the immune system completely. The purpose of the stem cell infusion is to restore the body’s blood production,” say Northwestern University researchers.

Multiple Sclerosis
In MS, myelin, the protective coat that surrounds nerve cells, is damaged or destroyed by immune-system cells. The aim of stem-cell therapy is to use chemotherapy to destroy the malfunctioning immune system, and repopulate it with stem cells. A pilot study found that 18 of 19 MS patients stabilized or improved after treatment, according to the US National Institute of Allergy and Infectious Diseases and the Immune Tolerance Network, who are sponsoring one trial.

Neurological
Parkinson’s and a number of other neurological diseases have hope in stem cell therapy. To replace cells lost to the disease, the idea is to coax stem cells into becoming dopamine-producing nerve cells. The treatment being explored is transplanting stem cells into the target sites of the brain that need dopamine. Dopamine is a chemical that allows messages to be sent to the parts of the brain that co-ordinate movement. Animal studies are under way.

A 70-Year-Old Poster Boy for Science – Man Saved by the Stem Cell

Mike had an angioplasty, triple-bypass heart surgery. Inside him were four wires, two stents, a pacemaker and a defibrillator. He had apparently run out of options in battling heart disease.

“After the last stent, doctors told me there was nothing more they could do for Mike,” said his wife, Marion.

However, science delivered a response. At the Minneapolis Heart Institute which is part of Abbott Northwestern Hospital, the 70-year-old Mike became a recipient of experimental stem cell treatment in January.

Different from controversial embryonic stem cell research, the treatment uses Mike’s own stem cells. Earlier this month, saying the utilization of embryos to perform stem cell research amounts to murder, President Bush vetoed a bill that would have expanded federal funding of embryonic stem cell research.

Mike said his experience has strengthened his support of all stem cell research.

“Based on what has happened to me and based on what all the medical people have told us, this will be the real answer,” he said. “Just think of the possibilities Parkinson’s, Alzheimer’s, diabetes, spinal injuries.

“It’s not to make us live forever. It’s so we can feel better when we are living.”

Mike feeling healthier is not as apparent as black-and-white. The answer is truly in color.

Looking much like a weather map does with heavy storm activity; Mike shows colored images of his heart at his Riverside Park home. The dissimilar colors show the health of the different areas of his heart. Pink areas are the healthiest and brown areas are the worst.

Before his January treatment the map only displayed a hint of pink and a big brown area. At his recent six-month checkup, the brown has all but vanished and practically a third of his heart is fully pink.

The map confirmed what he already knew. “I have more stamina,” he said. “I just feel better.”

He knew his results were good for another reason, too. He was asked to offer a testimonial about the experimental research. His words and full-page photograph grace the professional brochure the institute uses to seek donations.

“I figured it was working because they wouldn’t ask a guy who wouldn’t be around when the brochure came out,” he said.

Mike’s treatment took only a few hours and one overnight stay, which was of no cost to him because the procedure is experimental.

The treatment had bone marrow cells drawn, treated and then injected into 15 ailing portions of the heart. The presumption, according to lead researcher Dr. Tim, is that bone marrow cells stimulate the growth of blood vessels. The researchers also use stem cells to grow new muscle in the heart in a similar study.

Mike has an enlarged heart that wasn’t getting adequate blood. More vessels improve the blood flow in the heart, thus making it healthier.

“Mike had blockages that you couldn’t fix with bypass or angioplasty,” Henry said. “Whenever he does any work, he has shortness of breath or pain.”

With Mike’s results just one example of the success, the doctor said the research looks promising. Although Tim said the research is “cutting edge,” the theory is quite simple.

“We’re constantly repairing our own body, whether it’s our blood vessels, skin or liver,” he said. “So using our own cells, this is the natural way that the body rebuilds itself.”

As a poster boy for cutting-edge science, Mike feels odd. After all, he’s lived a life of routines. For 37 years, he’s lived in the same home. He has moonlighted the last 25 years as a public address announcer at high school hockey games. He worked 36 years as a post office carrier before retiring in 1993, partly for health reasons. He and Marion are a week shy of their 52nd anniversary.

He’s widely known as a practical joker and someone whose happy, optimistic persona spreads cheer. He spends much of his retirement following his three granddaughters in their year-round athletic pursuits.

“Being part of this research is like winning the lottery,” he said. “What a lucky chance I got. I am just going to continue on like a ball of string unwinding into the future.”

He has lofty praise for his local doctors. He feels equally lucky with his other medical treatment in Grand Forks since the 1987 heart attack suffered while delivering mail.

“There’s always been some new procedure, new medication or new idea for me,” he said. “I’ve never had a bad experience in a hospital. I’ve always looked forward to going to my doctor appointments.

“When I went to the hospital in Minneapolis, I figured they’d fix me up again. And they did.”

So, he doesn’t require catnaps as before. For the first time in at least five years, he is mowing the lawn. A struggle to walk across his lawn before, he can now walk a mile without discomfort.

“But I don’t go dancing,” he said. “Of course, I never did.

Robotic Surgery Techniques Deliver Stem Cells – Cardiac Cell Therapy Research

Researchers effectively used robotic surgery to deliver stem cell treatment to damaged heart tissue in pigs at the University of Minnesota.

The robotic surgery apparatus was minimally invasive throughout the injection procedure. The researchers took an extra step and “marked” the transplanted cells with iron particles in an effort to see if they engrafted in the pig hearts.

In six of seven cases, the transplant process was successful. The cells took hold and enhanced functioning of the heart as following MRI studies showed.

The cells that give rise to muscle, also know as myoblasts, in combination with bone-marrow derived cells were used in the experiment. Improving the development of new blood vessels as well as the performance of injured heart muscles were key characteristics confirmed by the implantation of both cell types. Both are in human clinical trials as well.

The research is available in the current issue of the Journal of Thoracic and Cardiovascular Surgery.

The method could be applied in human clinical trials once additional animal studies are completed.

“In people with heart failure, open surgery can be risky; finding a minimally invasive technique to deliver cell therapy to the damaged cardiac tissue would reduce the risk to patients,” said Doris, Ph.D., professor of Physiology, holder of the Medtronic Bakken Chair in Cardiovascular Repair, and co-leader of the study.

The minimally invasive approach would present several benefits for people with heart failure, Doris said. It offers surgeons the capability to target the cell infusion more precisely by utilizing a magnified view of the heart. It requires less time under anesthesia and can be performed while the heart is still beating. It is less dangerous to the patient.

Harald, M.D., co-leader of this study, now a surgery resident at Massachusetts General Hospital in Boston, pointed out, “Currently these types of cell therapies, in which stem cells are injected into damaged hearts, are only available to people who are enrolled in clinical research trials.”

Skeletal and bone marrow cells that are injected into damaged heart tissue have been shown to improve function in the left ventricle, the chamber of the heart that pumps blood into the aorta, the main artery through which oxygen-rich blood flows from the heart to the body.

Doris said more research needs to be done to establish if the minimally invasive technique can promise comparable results to open surgery, as well as which types of cells are most beneficial to infuse into damaged hearts. “But that is what keeps us busy,” she added,” finding the best treatment for patients with heart disease.”

What Great News! Embryonic Stem Cells Unnecessary!

With the controversy surrounding the use of embryonic stem cells, the above headline may come as a shock. The recent veto by President George Bush that denied extra federal funding for research conducted on embryonic stem cells, along with the clamor and backlash the decision faced from scientists, politicians, and various institutions, has all but confirmed the importance of embryonic stem cells. Is that not right? Perhaps not, as commentator Pat Boone recently found out. The fact is, embryonic stem cells may not be as important as we all think.

A couple of months ago, I was in downtown Los Angeles, at the courthouse, doing my jury duty for several days. There are always breaks and lulls, during which time hundreds of participants can and do talk and get to know each other. I actually enjoyed it.

During one of those breaks, I was electrified by a conversation with an L.A. scientist/engineer/businessman named John. Somehow the subject of embryonic stem-cell research came up, and I expressed my deep concerns about the eventual creation of nascent embryos and then the use of them in laboratory experiments. The state of California recently committed 3 billion taxpayer dollars, over the strenuous objections of many of us, to this experimentation.

Boone thinks like many of us today, that embryonic stem cells hold some sort of key to all our ailments. However, the moral dilemma that many individuals have with using embryos fuels the controversy. It seems as if the only thing keeping us from making great medical strides and developing advanced and effective treatments for illnesses that are incurable, is money to do the research needed to find the answers, and the elimination of any moral and religious debate. This has been the underlying principle behind embryonic stem cell research as Boone describes.

The rationale, the hope, is that pure embryonic stem cells might be effective in treating dire conditions like Parkinson’s, cancer, epilepsy and Alzheimer’s disease. There’s no proof, just the hope and projections of eager scientists and many large medical companies, and the very understandable desire of so many whose lives are affected by these and other maladies. The yearnings to find cures, somehow, somewhere, are overriding the moral questions about actually fertilizing a human egg with a human sperm, creating a life (obviously, if the new creation isn’t living, it’s useless) – and then dissecting and short-circuiting the inevitable development of this living organism in a search for a possible cure-all.

John continued to explain to Boone what his company specialized in. Dr. John said that it was non-controversial stem cells and treatment. He told Boone about the research that they had done and in detail pointed out the differences between embryonic and non-embryonic stem cells. Boone’s commentary below shows his amazement at what he heard. Because like many of us today, he was led to believe by the media and hype surrounding embryonic stem cells, that they were the only answer and that any moral dilemmas any of us face would have to be sequestered.

John told me about his company, a Los Angeles based adult stem-cell company whose goal is to develop stem-cell products for the life science and health-care industries. He informed me that the scientific founders of this company have over 30 years of experience in stem-cell research –and that they have discovered a novel stem cell from adult tissues with properties similar to cells obtained from embryos! These cells can be – and are being – recovered from almost any tissue found in adult humans, while maintaining many of the properties described for embryonic stem cells!

I was astounded.

John went on to tell me about the research conducted all these years by Dr. H and his colleagues in laboratories in Georgia, demonstrating scientifically that postnatal individuals – that’s you and me – contain a series of adult stem cells with attributes very similar, but not identical, to stem cells derived from embryos and fetuses. The similarities between these two groups of stem cells, i.e., embryonic stem cells and adult stem cells, include an unlimited ability to increase in numbers (self-renewal) and their ability to form any cell type in the body, including the gametes.

John continued to outline the discrepancies between the two forms of stem cells, and went on to state that a person could even use their own stem cells harvested from their own body. This would be ideal since they would be an exact match for the patient right down to the very DNA, and eliminate any chance of rejection.

The differences noted between embryonic and adult stem cells are reflected in the programming of the cells. The former cells are pre-programmed to form all the tissues of an individual. This event occurs automatically after conception, with fusion of the reproductive gametes, the sperm and ovum. In contrast, adult stem cells are not preprogrammed to form anything; they wait for exterior or environmental signals to tell them what they should do. They’re in a “resting state,” in effect waiting for marching orders. And Dr. H demonstrates, in a powerful photographic presentation that my wife and I have seen, that his group can – and have – identified and utilized specific chemical agents that can tell adult stem cells to form a specific single cell type, which they will do. And then those cells can be injected into the blood stream, where they will seek and find the damaged place where they’re needed!

And, wonderfully, a patient’s own easily harvested adult stem cells can be used for his or her own treatment, and the implanted “self” stem cells will not be rejected! In the presentation Shirley and I saw, we observed these powerful cells go like homing pigeons to the most needed spots in the heart or brain or other vital organ of the donor – and repair the damage. It looked truly miraculous, and we believe it is.

Boone finished his commentary by once again discussing the moral issues surrounding the use of embryonic stem cells. But there is an alternative as Boone learned. All the benefits of stem cell therapy, without any moral issues to hold science back. Boone even cites biblical passages in the end to point out that the bible, the foundation of the morals that drive many to oppose embryo use, may have been trying to tell us what all along what now seems to be an answer.

We’re not doctors or scientists and can only partially grasp all we’re seeing and hearing about. But to us, what these qualified and experienced scientists have discovered and developed not only makes the very expensive, long-range and extremely questionable research and use of created embryos unnecessary, it also offers help and probably miraculous treatment much more imminent and abundantly available, without the moral dilemma.

It reminds me of the time Moses balked at God’s command to confront Pharaoh with His command “Let My people go!” Moses felt so inadequate and asked, “Why should Pharaoh listen to what I say?” And God answered, “What is that in thy hand?”

Moses, befuddled, said, “My staff, my walking stick … Why?” God told him to throw it on the ground, and it became a serpent. Then God told him to pick it up, which Moses gingerly did, and it was a staff again. The point was the Creator of all mankind can do anything He wants, and we’re created in His image, with infinite capabilities. Instead of trying to “play God” and tamper with His proprietary creative processes, I feel we should recognize that He’s asking again, “What is that in your hand, in your blood? Use that, and I’ll work with you. Leave creation to me. I’ve got a lot more experience than you do!”

Non-Controversial Stem Cell Research Thrives

Emily was born June 6, in Northwest Medical Center in Broward County, her parents and her doctor gave her a special gift. Among the earliest in the nation to do so, Emily’s parents, Matt and Rosa of Margate, Fla., banked stem cells collected from the placenta that surrounded their baby before her birth.

An option that has been available for several years, blood from her umbilical cord was collected and saved. The blood can be used to effectively treat several serious blood and immune system diseases.

Although stem cell debate has escalated in recent years, a non-controversial source could present potentially life-saving therapies. Scientists discovered certain cells from the placenta may be as versatile as human embryonic stem cells.

Placental-derived stem cell research is likely to accelerate since President Bush vetoed the recent bill that would have increased federal funding for embryonic stem cell research. Placental stem cells are eligible for federal funding and in many ways more ideal due to the fact that they behave like embryonic stem cells, are plentiful, and do not involve the destruction of human embryos.

Recent accomplishments support the science behind placental stem cell research.

Scientists have been able to coax the placental stem cells to become bone, nerve, muscle, fat, pancreatic, or liver cells, which could make them useful in future treatment of such ailments as diabetes, heart disease, Alzheimer’s, and Parkinson’s.

“I know that with the cord blood, they have been able to treat leukemias, lymphomas, and anemias,” said Rosa, “but with the placenta cells, they’ll be able to treat heart disease, liver disease, diabetes, neurological disorders and do bone regeneration, and probably things we don’t even know about yet.”

Rosa and her husband want extra protection for their first child Emily in case something goes wrong in the future. Thus, banking her cord blood and placental tissue was the obvious choice. Mary, who is a surgical technician at the hospital where her daughter was born, also stated that cells also may be helpful to other family members because of the close genetic match.

“Being in the medical field, I’ve had a chance to see all kinds of things I wouldn’t want my daughter to go through,” she said. “With the cord blood and the placenta, you’re covered for anything. Life insurance is one thing, but this is kind of like life assurance.”

Dr. Bruce, the ob-gyn who delivered Emily by C-section and extracted the placental tissue and umbilical cord blood, said stem cells from cord blood have already saved many lives, and the placental cells offer promise for the future.

Mother to Bush – Son is Symptom Free Due to Stem Cell Treatment

Mary and her family, in the midst of another two dozen families, met with President George Bush before he signed two bills and vetoed another connected to stem cell research.

During a 15 second photo op, Mary tried to tell the story of her 3-year-old son. Ryan who suffers from mild cerebral palsy, she told the president, was the first child in the nation to be injected with stem cells from her own umbilical cord blood.

Her son received the infusion and immediately showed significant signs of improvement. Since October, the Batavia mother has tried to spread the story of her son to the masses, and now she had the chance to tell President Bush.

“I said, ‘My son is symptom-free now,’ and he just was floored. He just was speechless,” Mary said. “His mouth went open and he said, ‘What? Really?'”

Bush was quite interested in what Mary had to say, judging by the way he tried to follow her before he was pulled back by his staff, Mary stated.

A year prior to their child’s birth, Mary and her husband Steve decided to bank her cord blood and save Ryan’s umbilical cord after learning the significance of stem cells. One of Mary’s family members had died of leukemia because they were unable to find a compatible match of bone marrow, another source of stem cells.

Stem cells derived from cord blood (a rich source for stem cells), have revealed that they can differentiate into other varieties of cells in the body. Cord blood, used for many years as a cancer treatment was used in unique circumstances. Ryan’s case was the first where the stem cells were being used to treat a neurological disorder such as cerebral palsy.

Since there is no way to track if the stem cells are in fact the cause of health improvements, physicians and researchers are tentative to endorse the procedure says Mary. She finally went to an agreeing physician at Duke University in North Carolina after months of probing and rejection for the treatment from other clinics and doctors.

“Now he talks fine, he has no feeding issues, he has all his mobility back. There’s no need for occupational or speech therapy — he’s signed up for swim class,” she said.

Ryan no longer has the disorder according to evaluations by the Easter Seals and neurologists, Mary said.

“I’m grateful every single day. He isn’t even aware of what he was missing and what he’s gotten back. It’s so cool he’s got all these options and abilities in life now,” his mother said.

Anxious to get the word out, she has called legislators and “raised some eyebrows,” landing her an invitation to speak at a press conference about stem cell research in Washington, D.C., last month. Mary met with several senators, and Ryan’s story was brought up on the Senate floor by both Senators Barack Obama, D-Ill., and Sam Brownback, R-Kan.

In her pursuit to accomplish her goal of informing families around the nation about the magnitude of cord blood, she looked at her meeting with the president as the first step in her journey.

“For my family, they were awestruck. For me, it was, ‘This is my chance, this is my 15 seconds to get the message out for these families and these kids,'” she said. “I was on a mission.”

Upon returning Batavia, Mary plans to work on launching her foundation — www.neurocordblood.org — which will supply information about cord blood banking.

“The abilities you can have with this are just astounding,” she said. “It’s going to help so many kids.”

Safety of Spinal Cord Stem Cell Transplant Established

According to University of California – Irvine researchers, transplanting stem cells is not harmful and can serve as a therapeutic approach for the treatment of severe spinal cord injury.

The study conducted by Hans a UCI neurobiologist, and his colleagues at the Reeve-Irvine Research Center confirms previous findings by Hans’ lab; that replacing a cell type lost after injury improves the result after spinal cord injury in rodents. Identical data published by four other laboratories in the world show that rats with either mild or severe spinal cord injuries that were transplanted with using stem cells as a treatment suffered no visible injury or ill effects as a result of the treatment itself.

In 2005, Hans’ lab was the first to persuade stem cells to become highly pure specialized cells known as oligodendrocytes. The cells are imperative for the maintenance of electrical conduction in the central nervous system and also serve as the raw materials of myelin which acts as an insulation for nerve fibers. Paralysis can result when myelin is lost through disease or injury.

The current study, just like the original, exhibited that rats suffering from severe spinal cord injury injected with oligodendrocytes seven days after the injury, had the cells migrate to the proper sites within the spinal cord and wrap around damaged neurons, forming new myelin tissue.

In comparison, rats that were only slightly impaired showed no change in walking ability after transplantation or an increase or decrease in myelin generation. Hans says this is due to the fact that no loss of myelin occurred. Thus, any treatment targeted at regenerating myelin would have no effect because the animals were able to recover motor functions on their own, due to the minor nature of the injuries. It is important to note that although the treatment did was not able to provide ay benefit, it also did not cause any harm. Scientists decided to examine further and found no signs of damage to the tissue surrounding the spinal cord, thus demonstrating that no damage had occurred due to transplantation in the animals.

“Establishing the safety of implanted stem cells is crucial before we can move forward with testing these treatments in clinical trials,” said Hans an associate professor of anatomy and neurobiology and co-director of UCI’s Stem Cell Research Center. “We must always remember that a human clinical trial is an experiment and, going into it, we need to assure ourselves as best as we can that the treatment will not cause harm. This study is an important step in that direction.”

Hans is working with Geron Corp. to bring this treatment for acute spinal cord injury into Phase I clinical trials within the next year.

“Our biggest safety concern was that in the case of a severe injury, any harm the stem cell-derived treatment could cause would be masked by the injury itself,” Hans said. “In this study, we can see in animals that are only slightly injured that the transplantation does not cause visible harm and the injury is not hiding any damage the cells may have caused to the spinal cord or the surrounding tissue.”

UCI is a premier center for stem cell research in California. The university announced last week that it had received a $10 million gift from Bill and Sue in support of stem cell research, including matching funds to construct an $80 million Stem Cell Research Center facility.

Human Hair Follicles Source for Multipotent Stem Cells

Study co-authors are Hong Yu, Suresh M. Kumar, and Geza Acs, all from Penn; and Dong Fang, Ling Li, Thiennga K. Nguyen, and Meenhard Herlyn, all from the Wistar Institute, Philadelphia., University of Pennsylvania School of Medicine, July 12, 2006

New sources of adult stem cells appear to have the potential to differentiate into several cell types. Isolated by researchers at the University Of Pennsylvania School Of Medicine, the cells could one day provide the tissue required by individuals for treating a multitude of disorders. However, the approach to growing the cells must be put into overdrive to combat diseases such as Parkinson’s, spinal cord injury, and peripheral nerve disease.

“We are very excited about this new source of adult stem cells that has the potential for a variety of applications,” says senior author Xiaowei, MD, PhD, Assistant Professor of Pathology. “A number of reports have pointed to the fact that adult stem cells may be more flexible in what they become than previously thought, so we decided to look in the hair follicle bulge, a niche for these cells.” Xiaowei and colleagues report their findings in the latest issue of the American Journal of Pathology.

The researchers used an environment equal to that in human embryonic stem cell culturing. After isolating the cells from hair follicles, which were already a well known source of adult stem cells, researchers were able to grow a new type of multipotent adult stem cell from the scalp tissue provided by the National Institute of Health’s Cooperative Human Tissue Network.

Investigators gave the name “hair spheres” to the multipotent stem cells which grow in masses. They were able to separate the stem cells into multiple lineages after growing the “raw” cells from hair spheres using different varieties of growth factors. The lineages included nerve cells, melanocytes, and smooth muscle cells.

“Although we are just at the start of this research, our findings suggest that human hair follicles may provide an accessible, individualized source of stem cells,” says Xiaowei. The researchers are now working on inducing other cell types from the hair sphere cells and testing the cells in animal models.

Study co-authors are Hong, Suresh, and Geza, all from Penn; and Dong, Ling, Thiennga, and Meenhard, all from the Wistar Institute, Philadelphia.

Stem Cell Research to Combat Australia’s #1 Killer

Cardiovascular disease is Australia’s number one killer, but those afflicted by the disease may soon have optimism due to research conducted in Adelaide using stem cells.

Cells harvested from their own bone marrow will give patients a new treatment options utilizing purified stem cell technology.

While this new technology, which aims to create new heart tissue, is not intended to substitute current methods of treatment, it does give physicians another alternative for those patients who have not successfully responded to normal protocol which includes medication, surgery, and pacemakers.

The research, funded by the National Heart Foundation, is unique because of the high purity stem cells that are extracted from the bone marrow.

“There has been quite a lot of work in developing purification techniques with bone and cartilage, but its use in cardiac research is really only beginning,” stated cardiologist Dr. Peter.

“Previously human cells were injected into rats that had had heart attacks and the damage was reversed or repaired a lot by new blood vessels formed in the heart.”

Six months into the study, Dr. Peter said the team had already noted promising results.

University of Adelaide’s Professor Stephen, Dr. Andrew, and Dr. Stan from the Hanson Institute are part of the team at the Royal Adelaide Hospital.

The doctors intend to test the technology in larger animals first, such as sheep, and in two to three years begin clinical trials with human subjects.

“Should the treatment become available worldwide we would be looking at a 5-10 year time frame,” Dr. Peter said.

Adult Stem Cells Help to Prevent Amputation

Peripheral arterial disease, recognized as PAD, is a vascular disorder that affects the blood circulation in the arms, legs, feet, stomach, and kidneys. Normally a disease that requires amputation of the affected body part, Indiana University doctors are pioneering a novel method to prevent and avert such permanent treatment using a patient’s own stem cells.

The researchers at IU harvest adult stem cells from the patient’s bone marrow, inject the cells into the diseased leg, and thus encourage the development of new blood vessels and correct the problem. The study conducted by scientists at IU is the only one of its kind in the United States.

According to scientists, in patients that are healthy, stem cells from the bone marrow migrate out of the tissue to repair arteries and organs when they are injured. For individuals afflicted with PAD, stem cells cannot reach the injured tissue in numbers that make a difference.

Thus, in patients suffering from advanced PAD, doctors at IU decided to try transporting the healing stem cells from the marrow to the leg.

The results look hopeful even though to date, only 10 patients have gone through the procedure.

“The information that we’re getting from this study is telling us this therapy does indeed work, and we’re learning more and more about how to isolate this information,” said Dr. Michael, an assistant professor of surgery at Indiana University School of Medicine and the principal investigator of the trial.

PAD, a hardening and clogging of the arteries that can lead to poor circulation, pain, and numbness on the legs and feet, afflicts between 8 and 10 million people. In about 10 percent of the patients, PAD symptoms become so bad that amputation may be the only standard treatment option available stated Murphy.

Other present methods of treatment include angioplasty and/or bypass surgery to avoid the eventuality of amputation, but the downside is that not every individual patient is suitable for one of these procedures.

Michael’s study offers an option to those individuals where amputation is the only choice left.

Four years ago, 23 year old mother and dietary aide Adriane lost all five toes on her right foot after PAD developed when she had a blood clot in her leg. When PAD caused difficulty in her other leg, Adriane feared another amputation.

After registering in Michael’s trial in September, she has no problems. The discolorations and swelling in her foot, the pain, all of these disappeared.

“Now I can do everything I want,” she said. “I was worried, because I had been there before and I knew what the outcome was in the end. I was worried I would have to go through something like that again.”

The eventual goal is to enroll 20 patients in the study and conduct follow-ups for at least one year following treatment. Michael and his colleagues have had patients come from Miami, Kansas, and New York for the procedure.

A second study on PAD has been planned where the efficacy of stem cells isolated from a patient’s fat tissue will be compared to those cells that come from bone marrow. Michael also planned an exploration into whether they might also avoid hardening of arteries, not just in PAD, but throughout the body. The exploration would begin once either or both of the techniques for treating PAD are confirmed a success.

“We’re hoping to expand this information to rebuilding the heart after a heart attack, the brain after a stroke, and maybe even the kidney or liver with the complications of diabetes,” Michael said.