MS and ALS Adult Stem Cell Progress Made in Israel

By injecting sufferers of neurological diseases with therapeutic quantities of cultured adult stem cells, scientists based at Jerusalem’s Hadassah University Hospital have broken new ground in the field of stem cell research.

The researchers extracted stem cells from the hip bone marrow of 26 multiple sclerosis (MS) and amytrophic lateral sclerosis (ALS) patients. The cells were re-injected into the patients via lumbar puncture following a two-month long process of in vitro cleansing, multiplication and chemical ‘tagging’. The researcher team was led by Professor Dimitrious Karussis and Prof. Shimon Slavin, the recently retired head of Hadassah’s bone marrow unit.

The particular type of stem cell used in the trial, marked a world first according to Karussis.

“The sole aim of this study was to explore the feasibility and the safety of this treatment, since it is applied for first time,” Karussis told ISRAEL21c.

The experiment was deemed a success with no adverse effects reported. Leading the way for further developments in forthcoming clinical trials, it was encouraging that patients also displayed anecdotal improvements in clinical symptoms.

“Most MS patients reported a stabilization of their condition and some an improvement in function, especially in sphincter control, muscle power in arms, tremor and stability in walking,” Karussis said. “ALS patients continued to show signs of deterioration – though at a lesser than previous degree.”

This is good news for both groups of patients. Resulting in impaired sensory, motor, balance and vision function, MS causes damage to the body’s central nervous system and affects over 2.5 million people worldwide. Causing the gradual and fatal loss of the patient’s capacity for movement, ALS or Lou Gehrig’s disease, involves a similar degeneration of neuronal cells. ALS is more rare and progresses more rapidly.

Both conditions are ideal targets for stem cell treatment since they are both caused by the deterioration of a specific type of cell.

Suggesting that it might be possible to regenerate damaged nervous systems through cell re-growth, the Hadassah researchers found that transplanted adult stem cells began to differentiate into the kinds of cells which the diseases had destroyed. This was observed during extensive experimentation on animal models of MS and ALS.

Despite suffering from a similar motor neuron disorder, the treated lab mice retained 90 percent of their neurons after the equivalent of one or two years in the human progression of the diseases.

Marking the first time such adult stem cells have been injected into human patients, Karussis cited the most recent safety study. The study has paved the way for a larger efficacy trial to be held over the course of the next few years, despite remaining highly experimental since the small-scale study lacked a control group.

“We are encouraged as these are patients with advanced cases, many of them in wheelchairs,” Karussis told the Jerusalem Post.

Since most of the attention in recent years has been directed towards embryonic stem cell research, the current work utilizing adult stem cells is significant say scientists. There are advantages to using adult cells. The chances of immune rejection are significantly reduced since the patient can serve as his or her own donor. The ethical issues which surround embryonic stem cells is also avoided with this approach.

The researchers hope to launch a controlled clinical trial of the therapies after first enlarging the safety study to include more patients. Applications from potential trial patients are a welcome sight.

However, a license must first be obtained from the Ministry of Health, as well as funding to cover the expense of treating patients; a cost that can be up to $20,000 per patient. Despite these significant challenges, the team says it will all be worthwhile in the long run.

Stem cells, Karussis notes, “have already shown some promise in the treatment of joint and bone diseases, immune conditions and ischemia of the heart.” And he is optimistic, he says, that MS and ALS will join that auspicious list one day “not far into the future.”

28 Heart Failure Patients Treated with Adult Stem Cells

Using autologous stem cells, 28 patients were recently treated for acute myocardial infarction (MI) at the Sir Hurkisondas Nurrotumdas (HN) Hospital in Mumbai, India. The Medical Research Society of HN Hospitals funded the research. Patients from the 39-68 years age group were chosen for the project which was started in June of 2005.

“Most attempts including ours have considered the adult bone marrow as the source of the repair stem cells which is a source of hematopoietic and stromal stem/progenitor cells and have demonstrated that the implantation procedure is safe, feasible and effective in terms of improving the myocardial salvage rate of the infarcted myocardium. The latter can be attributed to the angiogenic events or secretion of angiogenic cytokines by these cells,” said Dr. VK Shah, Principal Investigator and Interventional Cardiologist, HN Hospital.

Facilitating the ability of the heart to heal itself, patient’s own bone marrow stem cells reach the infarcted area with the blood supply and contribute to the restoration of stem cell niches. The patient’s cells are injected into the culprit coronary artery after the opening of the occlusion by primary angioplasty.

“All the cases were successful without any complications. This procedure is done while the patient is fully conscious,” Dr. Shah claimed.

Further explaining the process, Dr. Shah said, “We have completed clinical check-up of all the patients of two, four, six and twelve weeks. Further a six-month follow-up of left ventricular (LV) function assessment by LV angiography and cardiac magnetic resonance imaging in stem cell therapy group have demonstrated an increase in LV ejection fraction (EF) by 7-12 per cent as compared to 1-3.2 per cent controls. There is improvement in LV systolic function, wherein LV end systolic volume (LVESV) has decreased significantly to 16-28 per cent. No patient has demonstrated deterioration of regional wall motion or any other side effects during the follow-up period. The results of our study show favourable trend towards improvements of cardiac functions which is the key determinant for long-term survival.”

In order to see what the long term effects of bone marrow infusion on any organ are, the hospital has carried out some routine tests at the end of two years. Normal in all patients were; lipid profile, renal function tests, liver function test, chest X-ray, sonography of abdomen and blood tests which include complete haemogram, ECG, and 2D echocardiography. The detailed clinical evaluation was performed on all patients starting with the first who received bone marrow stem cell therapy.

“In addition to the regular clinical follow-up, these tests helped us in assessing the safety and feasibility of transfusing autologous bone marrow stem cells (ABMSC) into the culprit coronary artery after an acute anterior wall MI,” said Dr. Shah.

According to patient Rajaram Chandra Jagdale (54), who underwent the therapy last April after suffering from an acute MI, “I am doing fine after the therapy.”

Mechanism Behind Muscle Stem Cell Transformation Discovered

Costa Rica is the destination for a seven year old boy named Matthew from Central Florida. The boy and his family are traveling not for a vacation, but with the hope of curing the boys autism, which was diagnosed when he was 18 months old.

“He wasn’t born with autism,” Matthew’s father Daniel Faiella said.

Matthew began to lose his ability to speak as he got older.

The future of medicine could potentially be revolutionized because of stem cells. This very reason has kept scientists working night and day all over the world in an effort to better understand the mechanisms that ensure the self-renewal of these cells and their capability to treat human disease.

With an active role in replacing dying cells and regenerating tissue, somatic stem cells, which are better known as adult stem cells, can be found in the human body. With such high therapeutic potential, these cells have become the subject of numerous research studies because of their ability to self-renew and generate cells identical to those of the organ from which they originate.

Via bone marrow transplant, various types of blood and bone cancers such as leukemia have already been treated using adult stem cells. The U.S. Government has given more research funds to institutes who study adult stem cells since they don

Autistic Boy will Travel to Abroad for Adult Stem Cell Treatment

A trip overseas is in the works for a seven year old boy named Matthew from Central Florida. The boy and his family are traveling not for a vacation, but with the hope of curing the boys autism, which was diagnosed when he was 18 months old.

“He wasn’t born with autism,” Matthew’s father Daniel Faiella said.

Matthew began to lose his ability to speak as he got older.

The last few months have shown promise. He is beginning to interact with others and can now draw. This change in behavior can more than likely be attributed his use of a hyperbaric chamber to increase blood flow and get more oxygen to his brain.

While researching their son’s condition, Matthew’s parents learned of a non-controversial stem cell treatment being offered in Central America. The stem cells used at the Central American clinic are harvested from umbilical cord blood, and not embryos.

The Faiella’s believe that much like the chamber, the stem cells will help repair the damage, but at a much faster rate.

“In essence, adult stem cells are creating more blood vessels to the brain, more oxygen to he brain, where it’s rejuvenating brain cells,” Faiella said.

The family expects the potential of a full recovery to be within grasp. Earlier this year, a South Florida girl made tremendous improvement following treatment for autism at the Institute of Cellular Medicine.

“He’s reaching back through his world, and we’re reaching back and we’re grabbing a hold of him,” said Matthew’s father.

At the end of February 2008, Matthew and his parents will depart on their journey.

Sacramento Man Treated for Spinal Injury Using Own Stem Cells

Leaving him hobbled and unable to work for nearly three years, Perry Anderson’s spine injury has changed the man’s life considerably. But stem cells are now being implanted into his spine and may work wonders in repairing his spine from a surgery that failed the first time.

The stem cells being used are not from human embryos. They come from bone marrow, and they not only have the potential to heal Perry’s spine, but the same type of cells allow diabetics to continue producing insulin, end the suffering caused be inflammatory bowel disease, and help heart attack patients heal.

Bone marrow stem cells, harvested both from cadavers and from live donors, are being developed for use against a range of illnesses. This is all while the ethical debate rages over the use of stem cells taken from discarded human embryos.

To control diseases caused by the sometimes harmful effects of the body’s own immune system these cells are proving useful in experimental drug therapies and have exhibited a remarkable ability to form fat, cartilage, ligaments, bone and tendons.

An adult stem cell-based drug is being tested at UC Davis by stem cell scientist Jan Nolta. She will be treating patients with Crohn’s, a chronic and painful bowel disease. Also using the cells in spine surgery, is the Sacramento based Dr. Pasquale Montesano.

Found in the tissue tucked inside the bone cavity are MSC’s, or mesenchymal stem cells.

Kept frozen, MSC’s can be stored for up to five years. But they must be used within 48 hours once removed in order to remain viable.

Anderson’s stem cells arrived in a tiny jar carefully packed in dry ice and stored in a foam cooler on Thursday in the operating room at Sutter Memorial Hospital in Sacramento.

Back in 2004, Anderson fell from a 6-foot ladder while he was painting. This resulted in an injured back. Searing headaches and pain were the symptoms of a bad disk pinching a nerve in his neck. In August of 2006, he had surgery to remove the damaged disk and fuse the vertebrae. But the procedure was not 100% successful.

“The headaches aren’t as bad, but my hands get numb, my arms are aching, I have lower back pain, anxiety attacks and depression,” Anderson, 42, said before his surgery Thursday. “I have worked since I was 17. Now I can’t do anything. I can’t mow the yard, I can’t go grocery shopping. It’s ridiculous.”

Careful to avoid Anderson’s carotid artery and spinal cord, Montesano first removed the scar tissue and bony fragments from between the damaged vertebrae.

He then took the crystal-like stem cell and packed them into a graft made from cadaver bone and shaped like a square nut from a hardware store. He tucked more cells around the graft after gently placing it into Anderson’s spine.

By screwing a small metal plate into his spine to anchor the bone in place while it heals, Montesano completed Anderson’s operation.

“Now we have to let Mother Nature take its course,” he said.

A handful of companies worldwide are currently taking mesenchymal stem cells from live donors in order to develop drugs. In Japan, researchers are studying the treatment of severe gum disease, England is working on multiple sclerosis, and in Iran, scientists are looking for a way to use MSC’s to treat cirrhosis.

Rationalizing the Stem Cell Debate

Stem cell research, particularly the type involving embryos, has been a hot topic responsible for a high amount of writing, discussion, and media attention as of late.

With the power to repair and even replace damaged tissue and cells, stem cells, although very meager in looks, are the most remarkable building blocks in our bodies.

Stem cells which have been derived from sources which include blood, bone marrow, fat, umbilical cord blood, nerves, adult tissue, and even the pulp of baby teeth have amassed data; proving their success in the treatment of numerous conditions and diseases.

These cells are often called “adult stem cells”. Heart damage, Parkinson’s Disease, spinal cord injury, autism, diabetes are among the nearly 80 conditions which have been successfully treated using these adult cells.

In fact, since the active ingredient in the bone marrow is stem cells, thousands of lives have been saved by adult stem cells in the form of bone marrow transplants for leukemia and other illnesses alone.

A stem cell can make any number of cells with more specialized functions, or make a copy of itself. The cell starts as an unspecified cell and changes when it divides.

For example, depending on what the body needs, white bloods cells, red blood cells, or other kinds can be created from just one type of stem cell in the human blood.

To this day, not one single human patient has ever been cured or successfully treated with embryonic stem cells, thus, it is a wonder why there is so much hype surrounding embryonic stem cell research. Especially given the fact that adult stem cells have produced such gleaming results thus far. and will undoubtedly continue to do so well into the future.

Embryonic stem cell are not only ineffective, but dangerous. In animal tests, subjects have experienced immune system rejection, formed lethal tumors, and displayed genetic instability.

At the expense of advancing adult stem cell research, why does the media, culture, and society continually support embryonic stem cell research? The scientific validity of adult stem cell being vastly superior to embryonic cells is undeniable.

The answer is green.

Money, and extremely large amounts of it are floating around embryonic stem cell research. The ongoing attempts to obtain our tax dollars for this purpose, the billions that are already invested privately, even the basic cost of donated eggs for embryonic research; all this money has been wasted thus far at the expense of advancing and producing more treatments that save human lives.

However, the current querulous embryonic stem cell debate may soon be at an end thanks to the recent announcements by Japan’s Shinya Yamanaka and James A. Thomson at the University of Wisconsin. The two scientists made two separate discoveries involving skin cells. They were able to produce embryonic stem cell equivalents without the use of an embryo.

Why continue research on such a controversial issue when such an important breakthrough has been made? Embryonic stem cell research should be a non-issue at this point.

Supporters Growing for iPS Cell Breakthrough

Without the slightest bit of knowledge as to what is possible, probable, or even feasible, politicians will ask us to allocate billions for stem cell research. We were told that embryonic stem cells were the only answer for treating diabetes, MS, blindness, Parkinson’s, spinal cord injury, and heart disease. But the truth is that embryonic stem cells have failed in every single category. Successful treatments do exist for these conditions, but they are all derived from adult stem cells, which are non-controversial, and non-embryonic.

With what could be considered the most important medical advancement in history coming to fruition as we debate on ethics, it is sad that we don’t receive non-selective, factual, and accurate news. With all the important breakthroughs that are taking place, it is amazing that the public is being kept in the dark.

Stunning the entire research community last week, revered embryonic scientific stem cell leader Ian Wilmut (cloner of Dolly the sheep) made an announcement in support of adult stem cells over embryonic. His decision was based on solid scientific principal as opposed to religious or moral preference. Professor Wilmut has always maintained that there is a better way to accomplish the objective without destroying the embryo; in fact, he has never believed embryonic research to be unethical.

Despite the resistance of governments to fund embryonic stem cell research in the U.S. and England, the rest of the world has been conducting unrestricted research for more than ten years using embryos. Despite the joint efforts of Germany, India, Korea, Russia, and China who invested billions in research, not even one successful treatment was produced. This fact was made painfully obvious by neurologist Dr. Carlos Lima earlier this year when he was addressing the House of Lords in England.

Miracle Stem Cell Heart Repair, a breakthrough book by author/researcher Christian Wilde makes the case for adult stem cells in perhaps the most succinct manner possible.

As the author explains; “If you take the moral, political and ethical concerns off the table, the scientific issues alone confronting ESC research (according to many scientists) are in themselves, daunting. Before an ESC can be safely injected into a human being it must be proven safe in an animal study. In cases to date, animal subjects have experienced dangerous tumor growth and rejection by the body.”

He believes the public deserves balanced non-selective and un-biased reporting on both forms of stem cell research.

With a one to seven year life expectancy and 50% not making the five-year mark, heart failure is currently claiming the lives of 22 million victims world wide. Using a minimally invasive procedure using their own thigh muscle stem cells only once, patients have successfully transitioned within the FDA trials from near death to recovery. Documentation of these “no option” heart patient’s stories can be found in Miracle Stem Cell Heart Repair.

Why, asks Wilde, should it be headline world news that someday an embryonic stem cell might possibly heal a mouse heart but nowhere is there a headline that proclaims hundreds of actual living breathing people, (not mice) have already had their damaged hearts repaired with adult stem cells? Is this a case of selective reporting?

As many as five previous heart attacks were sustained by several of the patients whose stories were documented in the book.

“75% of your heart is not functioning, frankly I don’t know how you are even alive,” said one patient’s own physician.

The same patient was walking one mile and then two miles a day after six weeks and continues to do well two years after surgery following the one-time stem cell treatment with the patient’s own adult cells at the Arizona Heart Institute. The Myoheart heart failure study has now been opened to 450 more patients as treatment moves toward approval since the FDA was satisfied with the safety and clinical success of the trial’s first phase.

More than 72 diseases which included type I and II diabetes, several cancers, MS, Parkinson’s, traumatic brain injury, and blindness are currently treatable with adult stem cells. Corneal blindness is being cured at a rate of eight patients per month in Cincinnati and more than four hundred and fifty blind patients in India have been cured to date. Type II diabetes is being treated with a high rate of success inBrazil and Argentina using adult stem cells, and in similar fashion, a one-time injection of bone marrow stem cells to the pancreas as kept a type I diabetes patient in London insulin free for three years.

Following a single procedure in which stem cells from their own nasal olfactory cavity were harvested and injected into the areas of spinal lesion, one hundred five quadriplegic and paraplegic patients are beginning to walk (some with braces). Half of Dr. Lima’s patients are United States natives.

With these successes there is wonder in how anyone can argue for embryonic stem cells any more. But regardless, the debate continues. Before long, the cures will be mainstream and there won’t be a place or use for embryonic cells any longer. Perhaps that is what it will take to finally end the debate.

Japanese Goverment Allocates Funds for More Adult Stem Cell Research

Recent breakthroughs in stem cell research have produced embryonic stem cells from non-controversial adult skin cells. These same scientists are now being funded by a Japanese government agency which has decided to forge ahead with stem cell research.

Human embryos, aborted fetuses, and adult stem cells made up the only three options for stem cell research. But that is no longer the case.

After the scientists reported their amazing discovery of being able to create stem cells from human skin cells, a mere 2 weeks passed before the decision was made by the Japan Science and Technology Agency to release the funds.

Due to the fact that scientists will no longer need to create and destroy an embryo in order to extract stem cells, critics of stem cell research should tone down their protesting due to this discovery.

The cells can be used to treat many different parts of a person’s body depending on their injury or medical disease/condition. The fact that they can be converted into many different types of cell tissue after they are extracted makes the discovery particularly amazing.

The cells were converted to an embryo like state by injecting them with genes. Skin cells from the foreskin of a newborn and normal skin cells from a 36 year old woman’s face were utilized by the Japanese and U.S. research teams. Cartilage, fat, muscle, brain, and heart cells were among those that were created from the skin cells.

In order to determine if the newly programmed stem cells actually are what they appear to be more studies will be required say both research teams.

A shout has been echoing around the world due to the breakthrough.

“We’re on the way now,” said Dr. Michael Creer, director of laboratory medicine at St. Louis University and former director of the St. Louis Cord Blood Bank. “The opportunities are expanding enormously. What we think might work today could well change in the next few months … We still don’t fully understand or appreciate what is possible.”

Many people are jumping up and down with excitement with the possibility of finding treatments and cures for diseases or conditions that currently have limited treatment options. Experts say that the work is far from finished.

“People have to understand that we’re not ‘there’ yet,” said Dr. Steve Teitelbaum, a Washington University pathologist.

Significant treatments have already resulted from stem cell research. Certain eye conditions, cancer, and diabetes are among the conditions which are currently treatable using adult stem cells.

New Blood Forming Stem Cells Create New Immune System for Mice

Researchers used new blood forming stem cells to replace the immune systems of mice.

Creating a new immune system for people with genetic or autoimmune blood diseases by transplanting adult stem cells is the eventual goal that researchers at the Stanford University School of Medicine have taken a small but significant step towards in their mouse studies.

Effectively replacing their immune systems, the scientists found a way to transplant new blood-forming stem cells into the bone marrow of mice.

Irving Weissman, MD, a co-senior author of the study and director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine said that many aspects of the technique would need to be adapted prior to human testing.

Weissman suggested the remaining hurdles could eventually be overcome, which include the type of mice that was used which were a poor mimic of the human immune system.

The benefits have great potential when those barriers are overcome.

A person’s immune cells attacks their own body when they are afflicted with an autoimmune disease such as multiple sclerosis. Their defective immune system could potentially be replaced with an entirely new immune system that would not attack the body; an immune system transplant, live a heart or liver transplant, could be performed in order to accomplish this.

All the cells of the blood are generated by blood forming stem cells in the bone marrow. A new immune system can be created by transplanting new blood-forming cells into the bone marrow, but the defective cells must be eliminated first. Radiation or intensive chemotherapy is the typical method used to wipe out the existing system. However, increased risk of cancer, brain damage, infertility, and other tissue damage can be caused by chemotherapy while it eliminates the cells of the bone marrow. This makes the therapy inadequate, since the exchange of brain function in order to rid one’s self of multiple sclerosis is not a fair trade.

One potential path around the problem would be to eliminate only the blood-forming stem cells without affecting bone marrow cells or other tissues thought Weissman and co-first author Deepta Bhattacharya, PhD, a postdoctoral scholar in Weissman’s lab. The cells can be effectively destroyed by injecting mice with molecules that latch on to specific proteins on the surface of the blood-forming stem cells. This feat was accomplished by the team which included Agnieszka Czechowicz, first author and medical student. Without further harming the mice, the technique eliminated the blood-forming stem cells.

“It is essentially a surgical strike against the blood-forming stem cells,” said Weissman, the Virginia & D.K. Ludwig Professor for Clinical Investigation in Cancer Research.

A new blood and immune system was established after the transplanted new blood-forming stem cells took residence in the bone marrow.

The new immune system would no longer attack tissues of the body in the person with autoimmune disease. For example, eliminating the cause of the disease in people with a genetic disorder such as sickle cell anemia, the new blood system would not have the sickle-cell mutation. But the hurdles that stand in the way are tall.

First, the researchers don’t know whether the same molecule on human blood-forming stem cells would be the right one to target with a therapy. Additionally, a functioning immune system is missing in the mice involved in the study. Before tests can begin on humans, the technique must first be tested on mice with normal immune systems.

Weissman said he considered this work to be the beginning of research that could lead to human studies although the steps will take time to overcome.

The November 23rd issue of Science published the study.

Also contributing to the work was postdoctoral scholar, Daniel Kraft, MD.

The National Institutes of Health, the Cancer Research Institute, and the Stanford Medical Scholars Program provided fellowships to fund the research.

Americans Travel Overseas for Stem Cell Treatment

Since stem cell treatment cannot be administered in the United States due to federal restrictions, many U.S. citizens are traveling abroad to get this form of treatment.

Health officials call the procedures, which have been proven safe in many cases, risky and experimental. Despite the criticism, it seems the scientific evidence has trumped any attempt at diminishing the very real therapeutic potential of stem cells. Patients are traveling to countries in Central America and India and spending thousands of dollars to undergo stem cell treatment procedures.

Brian Sheridan, who is the supervisor for the Center for Spinal Cord Injury at the Rehabilitation Institute of Michigan in Detroit said that, “there are always risks.”

“You can end up with an adverse event. That’s the nature of some of these experimental procedures.”

With the hope of regaining her ability to walk, Jeni Rummelt is currently in Europe receiving her 6th stem cell treatment. The 32-year-old was paralyzed from the waist down following a car accident.

“(These abilities) would have never come back without the stem cells,” said Rummelt, who spent $25,000 on the first procedure and $7,000 for each subsequent therapy. “It’s a slow progress. You know it’s not going to happen overnight, but it’s worth it.”

Since the destruction of human embryos is required for embryonic stem cell research, many individuals say this type of research is unethical.

However, it is now possible to transform adult stem cells which are derived from the skin, into the equivalent of embryonic stem cells. This new discovery should quiet many critics, especially with further advancements of the technology already on the way.

“I can understand their motivation, their desperation but it’s not something I can recommend if the treatments have not been proven to be safe and effective,” said Mervin Yoder, an Indiana-based doctor who is president of the International Society for Hematology and Stem Cells.