Stem Cells May Reverse Age-Related Multiple Sclerosis Effects

Proof-of-principle study provides hope for stimulating remyelination

Scientists at Joslin Diabetes Center, Harvard University, and the University of Cambridge have found that the age-related impairment of the body’s ability to replace protective myelin sheaths, which normally surround nerve fibers and allow them to send signals properly, may be reversible, offering new hope that therapeutic strategies aimed at restoring efficient regeneration can be effective in the central nervous system throughout life.

In a proof-of-principle study published in the journal Cell Stem Cell, the researchers report that defects in the regeneration of the myelin sheaths surrounding nerves, which are lost in diseases such as multiple sclerosis may be at least partially corrected following exposure of an old animal to the circulatory system of a young animal. Myelin is a fatty substance that protects nerves and aids in the quick transmission of signals between nerve cells.

Using a surgical technique, the researchers introduced an experimental demyelinating injury in the spinal cord of an old mouse, creating small areas of myelin loss, and then exposed those areas to cells found the blood of a young mouse. By doing so, they found that the influx of certain immune cells, called macrophages, from the young mouse helped resident stem cells restore effective remyelination in the old mouse’s spinal cord. This “rejuvenating” effect of young immune cells was mediated in part by the greater efficiency of the young cells in clearing away myelin debris created by the demyelinating injury. Prior studies have shown that this debris impedes the regeneration of myelin.

“Aging impairs regenerative potential in the central nervous system,” says author Amy J. Wagers, PhD, an associate professor of stem cell and regenerative biology at Harvard University and Joslin, who co-led the study with Professor Robin Franklin, director of the MS Society’s Cambridge Centre for Myelin Repair at the University of Cambridge. “This impairment can be reversed, however, suggesting that the eventual development of cell-based or drug-based interventions that mimic the rejuvenation signals found in our study could be used therapeutically.”

This could be particularly useful, she adds, in treating MS, which typically spans many decades of life, and thus is likely to be influenced by age-dependent reductions in the ability of myelin to regenerate. In MS, the body’s own immune system attacks the myelin sheath and prevents nerve fibers in the brain from sending signals properly, which can cause mild symptoms such as limb numbness or more serious ones like losing the ability to walk or speak. As people with MS age, remyelination decreases significantly, eventually causing permanent loss of nerve fibers.

“For MS sufferers,” says Franklin, “this means that, in theory, regenerative therapies will work throughout the duration of the disease. Specifically, it means that remyelination therapies do not need to be based on stem cell transplantation since the stem cells already present in the brain and spinal cord can be made to regenerate myelin, regardless of a person’s age.”

Other Joslin co-authors of the study were Tata Nageswara Rao and Jennifer L. Shadrach.

About Joslin Diabetes Center
Joslin Diabetes Center, located in Boston, Massachusetts, is the world’s preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School.

Immune Cells Killing Stem Cells and Stem Cells Killing Immune Cells

Knight et al. J Neurol Sci.
Several studies have demonstrated that stem cells are useful in the treatment of multiple sclerosis. The Cellmedicine clinic published previously in collaboration with the University of California San Diego that 3 patients treated with their own fat derived stem cells entered remission. Other studies are ongoing, including a study at the Cleveland Clinic in which bone marrow stem cells differentiated into mesenchymal stem cells are being administered into patients with multiple sclerosis. Unfortunately the mechanisms by which therapeutic effects occur are still largely unknown. One general school of thought believes that stem cells are capable of differentiating into damaged brain cells. The other school of thought believes that stem cells are capable of producing numerous growth factors, called trophic factors, that mediate therapeutic activity of the stem cells. Yet another school of thought propagates the notion that stem cells are merely immune modulatory cells. Before continuing, it is important to point out that stem cell therapy for multiple sclerosis involving autologous hematopoietic transplants is different than what we are discussing here. Autologous (your own) hematopoietic stem cell therapy is not based on regenerating new tissues, but to achieve the objective of extracting cells from a patients, purifying blood making (hematopoietic) stem cells, destroying the immune system of the recipient so as to wipe out the multiple sclerosis causing T cells, and subsequently readministering the patient’s own cells in order to regenerate the immune system. This approach, which was made popular by Dr. Richard Burt from Northwestern University.
In order to assess mechanisms of how stem cells work in multiple sclerosis it is necessary to induce the disease in animals. The most widely used animal model of multiple sclerosis is the experimental allergic encephalomyelitis model. This disease is induced in female mice that are genetically bred to have a predisposition to autoimmunity. These animals are immunized with myelin basic protein or myelin oligodendrocyte protein. Both of these proteins are components of the myelin sheath that protects the axons. In multiple sclerosis immune attack occurs against components of the myelin sheath. Therefore immunizing predisposed animals to components of the myelin sheath induces a disease similar to multiple sclerosis. The EAE model has been critical in development of some of the currently used treatments for multiple sclerosis such as copaxone and interferon.
Original studies have demonstrated that administration of bone marrow derived mesenchymal stem cells protects mice from development of EAE. This protection was associated with regeneration on oligodendrocytes as well as shifts in immune response. Unfortunately these studies did not decipher whether the protective effects of the stem cells were mediated by immune modulation, regeneration, or a combination of both. Other studies have shown that MSC derived from adipose tissue had a similar effect. One interesting point of these studies was that the stem cell source used was of human origin and the recipient mice were immune competent. One would imagine that administration of human cells into a mouse would result in rapid rejection. This did not appear to be the case since the human cells were found to persist and also to differentiated into human neural tissues in the mouse. One mechanism for this “immune privilege” of MSC is believed to be their low expression of immune stimulatory molecules such as HLA antigens, costimulatory molecules (CD80/86) and cytokines capable of stimulating inflammatory responses such as IL-12. Besides not being seen by the immune system, it appears that MSC are involved in actively suppressing the immune system. In one study MSC were demonstrated to naturally home into lymph nodes subsequent to intravenous administration and “reprogram” T cells so as to suppress delayed type hypersensitive reactions. In those experiments scientists found that the mechanism of MSC-mediated immune inhibition was via secretion of nitric oxide. Other molecules that MSC use to suppress the immune system include soluble HLA-G, Leukemia Inhibitor Factor (LIF), IL-10, interleukin-1 receptor antagonist, and TGF-beta. MSC also indirectly suppress the immune system by secreting VEGF which blocks dendritic cell maturation and thus prevents activation of mature T cells.
While a lot of work has been performed investigating how MSC suppress the immune system, relatively little is known regarding if other types of stem cells, or immature cells, inhibit the immune system. This is very relevant because there are companies such as Stem Cells Inc that are using fetally-derived progenitor cells therapeutically in a universal donor fashion. There was a paper from an Israeli group demonstrating that neural progenitors administered into the EAE model have a therapeutic effect that is mediated through immune modulation, however, relatively little work has been performed identifying the cell-to-cell interactions that are associated with such immune modulation.
Recently a paper by Knight et al. Cross-talk between CD4(+) T-cells and neural stem/progenitor cells. Knight et al. J Neurol Sci. 2011 Apr 12 attempted to investigate the interaction between immune cells and neural stem cells and vice versa. The investigators developed an in vitro system in which neural stem cells were incubated with CD 4 cells of the Th1 (stimulators of cell mediated immunity), Th2 (stimulators of antibody mediated immunity) and Th17 (stimulators of inflammatory responses) subsets. In order to elucidate the impact of the death receptor (Fas) and its ligand (FasL), the mouse strains lpr and gld, respectively, were used.
The investigators showed that Th1 type CD4 cells were capable of directly killing neural stem cells in vitro. Killing appeared to be independent of Fas activation on the stem cells since gld derived T cells or lpr derived neural stem cells still participated in killing. Interestingly, neural stem cells were capable of stimulating cell death in Th1 and Th17 cells but not in the Th2 cells. Killing was contact dependent and appeared to be mediated by FasL expressed on the neural stem cells. This is interesting because some other studies have demonstrated that FasL found on hematopoietic stem cells appears to kill activated T cells. In the context of hematopoietic stem cells this phenomena may be used to explain clinical findings that transplanting high numbers of CD34 cells results in a higher engraftment, mediated in part by killing of recipient origin T cells.
The finding that neural stem cells express FasL and selectively kill inflammatory cells (Th1 and Th17) while sparing anti-inflammatory cells (Th2) indicates that the stem cells themselves may be therapeutic by exerting an immune modulatory effect. One thing that the study did not do is to see if differentiated neural stem cells would mediate the same effect. In other words, it is essentially to know if the general state of cell immaturity is associated with inhibition of inflammatory responses, or whether this is an activity specific to neurons. As mentioned above, previous studies have demonstrated that mesenchymal stem cells (MSC) are capable of eliciting immune modulation through a similar means. Specifically, MSC have been demonstrated to stimulate selective generation of T regulatory cells. This cell type was not evaluated in the current study, however some activities of Th2 cells are shared with Treg cells in that both are capable of suppressing T cytotoxic cell activation. In the context of explaining biological activities of stem cell therapy studies such as this one stimulate the believe that stem cells do not necessarily mediate their effects by replacing damaged cells, but by acting on the immune system. Theoretically, one of the reasons why immature cells are immune modulatory in the anti-inflammatory sense may be because inflammation is associated with oxidative stress. Oxidative stress is associated with mutations. Conceptually, the body would want to preferentially protect the genome of immature cells given that the more immature the cells are, the more potential they have for stimulation of cancer. Mature cells have a limited self renewal ability, whereas immature cells, given they have a higher potential for replication are more likely to accumulate genomic damage and neoplastically transform.

Biomedical Ethics in a Brave, New World

Dennis Trammell Pastor of the First Baptist Church at
Possum Kingdom Lake, near Graford was diagnosed with multiple sclerosis in 1999
when his vision decreased in one eye, a symptom of multiple sclerosis called
optic neuritis. Over the years he has been receiving numerous conventional
medications that dealt with the symptoms of multiple sclerosis. However in July
2008, his illness advanced to the secondary progressive phase of the disease.
Having no treatment options available, two months later, he went to the
Cellmedicine clinic to receive adult stem cell therapy.

To date over 200 patients with multiple sclerosis have been
treated with adult stem cells by Cellmedicine. Adult stem cells such as those
derived from the patient’s own fat have the ability to help the nervous system
heal itself from damage, as well as "reprogram" the immune system to stop
attacking the body. This is explained in a scientific publication that
Cellmedicine and collaborators from the University of California San Diego have
written

www.translational-medicine.com/content/pdf/1479-5876-7-29.pdf
and is
explained in this video

www.youtube.com/watch?v=wC0VkR3gRoA
.

Alluding to the controversy surrounding stem cells, which
was particularly relevant to Pastor Trammell, he stated, "I really questioned
before agreeing to take part in the treatments what type of stem cells were
used". Several stem cell clinics use fetal-derived stem cells. Pastor Trammell
highly objected to this possibility based on moral principal. From a medical
perspective fetal stem cells are dangerous given the possibility of cancer
formation. Accordingly, he was pleased to learn that that Cellmedicine clinic
uses only stem cells from adult sources.

The Pastor reports a significant increase in his energy
level, "I had gotten to the point where a nap was needed on a regular basis. But
since the treatment, a daily nap is no longer needed," he said. Other multiple
sclerosis patients treated at Cellmedicine have reported similar beneficial
effects. Holly Huber from San Diego suffered from loss of balance,
incontinence, fatigue and like Pastor Trammell, optic neuritis. Here is a video
of Holly describing her story
www.youtube.com/watch?v=cqtBfArn1I0.

The issue of using stem cells is considered by many
stakeholders in the religious community. "We’re still dealing with the age-old
question: "Given what can be done, ought we?’ But the list of ‘can-do’ options
in health care get longer each day; hence, also the ‘ought’ questions and the
complexities of knowing right from wrong, good from bad," said Tarris Rosell,
professor at Central Baptist Theological Seminary, and the Rosemary Flanigan
Chair in the Center for Practical Bioethics in Kansas City, Mo.

However, it seems like adult stem cells are not only
acceptable, but in some cases endorsed as an alternative to embryonic stem
cells. This is highlighted by the recent funding of adult stem cell research by
the Vatican

www.cbsnews.com/stories/2010/04/23/world/main6424439.shtml

Coach’s fight a team effort

Sam Harrell is a well-known Ennis football coach and father of Texas Tech’s former quarterback Graham Harrell. Steve Betik has worked in construction for decades. Both of them suffer from multiple sclerosis. When they asked the Ennis chiropractor Dr. William Davis about using stem cells for their condition, his reaction was that it would be expensive, but if they wanted to go for it, he would help raise the needed funds. Both of them have registered for an experimental stem cell therapy offered in Central America by Cellmedicine. This is the same stem cell treatment that allowed Texas Fort Worth Police Sergeant Preston Walker, a patient with multiple sclerosis be able to
return to work after failing to respond to the medication given by his neurologist.

Treatment for multiple sclerosis generally addresses symptoms, but when conventional approaches stop inducing responses, there are very little options left. One area of active investigation has been stem cell therapy. Although very new, a small three-year study by the Northwestern University School of Medicine concluded last year that stem cell transplants from the patients’ own bodies might help control or even reverse symptoms.

Unfortunately, FDA approval of such methods, even if documented in larger research, is years away. Specifically, three phases of clinical trials have to be conducted. Phase I involves testing of safety. Phase II clinical trials
test whether there is a therapeutic effect, however these are “unblinded” in that the patients know that they are receiving an experimental treatment, thus the possibility exists of placebo effect. Phase III clinical trials are performed at multiple hospitals in a “double blinded” manner so that neither the doctor, nor patient knows whether they are receiving the treatment or the placebo. At present stem cell therapy for multiple sclerosis has only reached
Phase I/II clinical trials.

Companies such as www.cellmedicine.com offer stem cell therapy based on the same science and medical practices used in the United States. To date over 200 patients with multiple sclerosis have been treated by Cellmedicine, however they openly state that the procedure is experimental. This did not deter Sam Harrell and Steve Betik.They are scheduled to fly together in June to the Cellmedicine clinic in Central America, where Harrell is expected to remain two weeks; Betik, a month.

In order to raise funds to support their treatment, the Ennis football boosters club, in conjunction with the town’s chamber of commerce, is hosting a dinner and auction April 10. Davis and others hope that any excess funds they raise through the Foundation for Hope will be applied to an annual fundraiser for anyone with special needs.

“We’re like babies crawling,” Davis said of their efforts. “Who knows what the future will hold?”

Patients interested in learning more about Cellmedicine can go to the website www.cellmedicine.com or view videos at www.youtube.com/cellmedicine

Hope Through Stem Cell Therapy

Mary Posta suffers from multiple sclerosis, a debilitating
disease that progressively degenerates the nervous system of its victims through
stripping away the insulator proteins surrounding the nerves called myelin.

In January of this year Mary Posta completed raising funds
to be treated by Cellmedicine in Central America using stem cells and returned
from treatment feeling "really good".  Specifically, after a month spent at
Cellmedicine, she stated "I can walk and talk better, and there are other
things." She adds "My memory seems to be better. I’m moving faster on thinking
and talking, and I have a lot more energy. I used to have to take sleeping pills
but have not had to start taking them again."

The stem cell therapy comprises of an intensive four-week
program of stem-cell and physical therapies.  The stem cells used are from adult
sources and therefore are not subjected to the ethical controversy associated
with other types of stem cells such as fetal or embryonic stem cells.

Cellmedicine has previously published results of the first
three multiple sclerosis patients in a peer reviewed medical journal which can
be found at this link

http://www.translational-medicine.com/content/pdf/1479-5876-7-29.pdf

The approach used involves administration of the cells
purified from the fat of the patients.  These cells contain two types of stem
cells, one called mesenchymal and the other called hematopoietic.  Additionally,
cells extracted from fat include alternatively activated macrophages and T
regulatory cells.  At a theoretical level these cells may be mediating their
effects as follows: 

Mesenchymal stem cells are known to inhibit multiple
sclerosis when administered in animal models of the disease, as seen in this
video

http://www.youtube.com/watch?v=D2RIuCc5h0A
.  The video discusses one
mechanism by which mesenchymal stem cells achieve this effect, particularly
through induction of an enzyme called indolamine 2,3 deoxygenase, which is
responsible for shutting down autoreactive T cells.  Since multiple sclerosis is
a disease in which T cells are mediating destruction of the myelin sheath,
suppression of autoreactive T cells is theoretically beneficial.  Additionally,
mesenchymal stem cells are known to produce various growth factors that increase
ability of the body’s own cells to repair themselves.  Furthermore, some studies
have suggested that mesenchymal stem cells themselves are capable of
differentiating into oligodendrocytes and Schwann cells, which produce myelin,
as well as into brand new nervous system tissue. 

Hematopoietic stem cells are conventionally known as
the cells that are responsible for the therapeutic effect of bone marrow
transplantation.  That is, these are the cells that produce all the blood cells
in the body.  More recent studies have shown that hematopoietic stem cells, such
as CD34 positive cells,  are capable of producing growth factors such as IGF-1,
these are capable of protecting various cells in the body from premature cell
death.  Additionally, there are some studies that suggest CD34 cells are capable
of regenerating injured nervous system tissue.

Alternatively activated macrophages comprise a
subset of the immune system cell classically known as the "big eater".  While
conventional macrophages are involved in protecting the body from disease by
eating pathogens, as well as producing inflammatory stimuli, alternatively
activated macrophages are involved in healing of damaged tissue.  It is known
that alternatively activated macrophages generate substances such as
interleukin-10 that shut down ongoing immunological/inflammatory reactions, as
well as assist in tissue healing.

T regulatory cells resemble the "anti-matter" of T
cells.  The body has two parallel universes of T cells.  The conventional T
cells are responsible for attacking everything that does not belong to the
body.  That is, conventional T cells recognize and kill bacteria, viruses, and
other pathogens.  On the other hand, T regulatory cells recognize everything
that "belongs" to the body.  For example, there are T regulatory cells in the
body that recognize myelin.  The difference between T regulatory cells and
conventional T cells is that T regulatory cells do not "kill" but instead
prevent what is being recognized by conventional T cells from being killed.  In
other words the T regulatory cells serve as a backup mechanism for the immune
system so that in situations such as multiple sclerosis, where the conventional
T cells are attacking something that they should not be attacking, the T
regulatory cells try to inhibit that attack.  Unfortunately in multiple
sclerosis, by the time the disease is clinically detected, the T regulatory
cells are not exerting their effects for reasons some known and some unknown. 
Adipose tissue contains high numbers of T regulatory cells, which are more
potent than T regulatory cells found from other tissues in the body.  This is
explained in this video, which discusses a publication from Harvard Medical
School
http://www.youtube.com/watch?v=rEJfGu29Rg8.

Given the potent combination of stem cells, and other
therapeutic cells, found in fat tissue, it is interesting that the company
Vet-Stem has already commercialized the procedure of using fat-derived cells for
treatment of companion animals.  Here is a video discussing some of Vet-Stem’s
technologies
http://www.youtube.com/watch?v=hEkSJo3CmPc .

Use of fat stem cells in patients with multiple sclerosis
has been previously reported in numerous other media venues:

CBS News:

http://www.youtube.com/user/cellmedicine#p/u/24/wIcUaKZWOSE

Fox 4 News:
http://www.youtube.com/user/cellmedicine#p/u/25/1j1F57olCdI

Texas Channel 8 News:
http://www.youtube.com/user/cellmedicine#p/u/21/r_mOKM5__00

CBS 4 News:
http://www.youtube.com/user/cellmedicine#p/u/19/mxd6t3izxtw

Stem Cells Might Reverse Heart Damage From Chemo

One of the great findings of regenerative medicine was that organs previously believed to be incapable of healing themselves actually contain stem cells that in response to injury cause some degree of healing. The problem being that these "endogenous healing mechanisms" are usually too small to mediate effects that are visible at the clinical level. For example, the brain was considered to have very limited ability to heal itself after damage. Recent studies that have allowed for observation of brain cells after experimental strokes have led to the discovery of brain stem cells in the dendate gyrus and subventricular zones of the brain, stem cells that start to multiple after a stroke. Interestingly, various hormones such as human chonrionic gonadotropin, are capable of stimulating brain stem cell multiplication. This is currently being used in clinical trials for stroke by the company Stem Cell Therapeutics.

In the area of heart failure, it was also believed that once cardiac tissue is damaged, the only repair process that the body performs is production of scar tissue, which is pathological to the patient. While this scar tissue is found in the majority of the injured area, molecular studies have revealed the existence of cardiac specific stem cells, which start to multiply after injury and serve to repair, albeit in small amounts, the infarct area.

One way to augment endogenous repair processes is to administer stem cells from the bone marrow, which are known to produce various growth factors that assist the tissue-specific stem cell in mediating its activity. Another way is to physically extract the tissue specific stem cells, expand them outside of the body and reimplant them into the damaged area.

In a recent publication in the journal Circulation, Piero Anversa, M.D., director, Center for Regenerative Medicine, Departments of Anesthesia and Medicine and Cardiovascular Division, Brigham and Women’s Hospital, Boston and Roberto Bolli, M.D., chief, cardiology, and director, Institute of Molecular Cardiology, University of Louisville, Kentucky, describe the use of cardiac specific stem cells in treatment of animals whose hearts of been damaged by the chemotherapeutic drug doxorubicin.
Doxorubicin is a chemotherapeutic drug that is mainly used in the treatment of breast, ovarian, lung, and thyroid cancers, as well as for neuroblastoma, lymphoma and leukemia. One of the main limiting factors to increasing the dose of doxorubicin to levels that can lead to tumor eradication is that it causes damage to the heart muscle, the myocardium.

In the published study, the investigators expanded the cardiac specific stem cells from rats, gave the rats high doses of doxorubicin and in some rats injected back cardiac specific stem cells, whereas other rats received control cells. The rats that received the cardiac specific stem cells had both preservation of cardiac function, and also regeneration of the damaged heart tissue. This is an important finding since the type of damage that doxorubicin does to the heart is different from other types of heart damage that have been studies, such as the damage that occurs after a heart attack. These data seem to suggest that stem cell therapy may be useful in a variety of injury situations.

"Theoretically, patients could be rescued using their own stem cells," said study author Dr. Piero Anversa, director of the Center for Regenerative Medicine at Brigham and Women’s Hospital in Boston. Dr. Aversa is one of the original discoverers of the cardiac specific stem cell when he published experiments in dogs demonstrating multiplication of cells in the myocardium that seem to have ability to generate new tissue after damage (Linke et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8966-71).

"A Phase 1 clinical trial using a similar procedure in people is already under way", said Dr. Roberto Bolli, chief of cardiology and director of the Institute of Molecular Cardiology at the University of Louisville in Kentucky, who is heading the trial. The FDA has approved a Phase I clinical trial using cardiac specific stem cells in 30 patients who have congestive heart failure due to disseminated atherosclerosis. "In the trial, participants’ cardiac tissue will be harvested, the stem cells isolated and then expanded in vitro from about 500 cells to 1 million cells over several weeks", Bolli explained. "Several months after the patient has undergone bypass surgery, the stem cells will be re-injected." A similar clinical trial is being performed at Cedars Sinai in Los Angeles.

While the problems of tissue extraction (which is performed by an invasive procedure requiring biopsy of heart tissue) and cost of expansion are still formidable hurdles to widespread implementation, it is believed that the clinical evidence of a therapeutic response will open the door to other avenues of expanding tissue specific stem cells, such as administration of growth factors that can accomplish this without need for cell extraction outside of the body.

Stem Cell Therapy Aids the Return of Lava Man

Lava Man is a race horse that has had quite a career: he has earned more than $5.2 million and was considered one of the top racehorses in North America. Unfortunately, the recent past has not been to kind to him. Last year he finished last in the 2008 Eddie Read Handicap at Del Mar, and previous to that he has lost a series of six races in a row. Lava Man had arthritis in the joints in his ankles and a small fracture in his left front leg, Being 7 years old at that time, his owners decided it was time for Lava Man to retire.

However it seems like Lava Man’s fortunes may have changed. 17 months after his last race, he is scheduled to make a come-back this Saturday at Hollywood Park in the Native Diver Handicap. The horse was treated with his own fat derived stem cells by Dr. Doug Herthel, who stated:

"The trainer is the only one who can tell you how he’s going to run Saturday, but as far as the way he looks and based on our experience with other horses, theoretically, he should be much better than he was," said Dr. Doug Herthel, who treated Lava Man at the Alamo Pintado Equine Medical Center in Los Olivos, Calif.

"We think of those stem cells as little paramedics," Herthel said. "They go in and they help; they enhance the health of the cartilage." Dr. Herthel stated that significant improvements have occurred in Lava Man following stem cell therapy. He also stated that if Lava Man makes a triumphant return due to stem cells, this would not be the first case of this occurring. He cited the example of Ever A Friend , a 6-year-old horse, who was injured in May 2008, received the same type of fat derived stem cells as Lava Man and returned to win an allowance race and finish second in the Grade I Citation Handicap.

The fat derived stem cells that are being used in the treated of horses appear to work through several mechanisms. On the one hand they can become new cartilage and bone tissue directly, while on the other hand the stem cells producing various growth factors that accelerate the process of healing. Another method, that is more debated amongst scientists, is that the stem cells can actually produce enzymes that degrade scar tissue and allow replacement with functional tissue.

Human use of fat stem cells has been performed for multiple sclerosis (Riordan et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009 Apr 24;7:29) and is currently being investigated for other conditions such as heart failure and rheumatoid arthritis.

Cleveland Clinic receives $2.75M grant to study stem cell use in treating MS

The use of stem cells for multiple sclerosis can be categorized into two main approaches. The first involves transplantation of blood making stem cells, called hematopoietic stem cells, after the immune response of the patient is destroyed. This is performed because multiple sclerosis is an immunological disease in which the T cells are attacking the "insulator" of the nerves, a protein called myelin basic protein. By destroying the immune system and subsequently adding stem cells that will make a new immune system, this approach "resets the clock" and has yielded success in early clinical studies. Unfortunately, the problem with destroying the patient immune system is that they undergo a period of immune compromise during which they are susceptible to bacterial, fungal, and viral infections. The second method of using stem cells in multiple sclerosis is to administer a type of stem cell called mesenchymal stem cells, which actually reprogram the pathogenic T cells so that they slow down their immune attack. Mesenchymal stem cells also possess two other important properties: a) they induce the generation of T regulatory cells, which block pathologic T cells from attacking myeling&; and b) they help to regenerate the injured neurons through producing growth factors, as well as becoming new neurons.

For the study of this second approach, the Cleveland Clinic has received a $2.75 million federal grant from the Department of Defense. This is a 4-year grant that will fund a 24-patient study which will be conducted by the Center for Stem Cell and Regenerative Medicine. The study will investigate patients with relapse-remitting MS that are still able to walk but have moderate to severe disability. Collaborators in the study will include the stem cell company Athersys Inc., Case Western Reserve University, the Clinic, Ohio State University and University Hospitals Case Medical Center.

"Mesenchymal stem cells are primitive cells in the bone marrow that have a wide range of effects that decrease the activity of immune cells which are over-active in MS," said Dr. Jeffrey Cohen of the Clinic’s Mellen Center for Multiple Sclerosis Treatment and Research. "In addition, in numerous laboratory studies, MSC’s were able to migrate from the blood in to areas of inflammation or injury in the nervous system and reduce damage by developing into cells resembling neurons (nerve cells) and glia (support cells) and, probably more importantly, by creating a tissue environment that encourages intrinsic repair mechanisms," he said.

The proposed study is similar to work performed by the Cellmedicine (www.cellmedicine.com ) stem cell treatment clinic which has published on 3 patients with MS undergoing a recovery after treatment with their own fat derived stem cells, without immune suppression. This was published with collaborators at the company Medistem Inc, the University of California San Diego, Indiana University, the company Vet-Stem and the University of Utah. The publication is freely available at this link www.translational-medicine.com/content/7/1/29.

The use of fat as a source of mesenchymal stem cells for treatment of MS is appealing for several reasons. Firstly, the high content of these stem cells in the fat makes expansion of the cells unnecessary for certain uses. The process of cell expansion is technically complex and can only be performed at specialized institutions with experience in cell processing. Secondly, fat contains high concentrations of T regulatory cells, therefore in addition to administering mesenchymal stem cells, the presence of these T cells is theoretically beneficial since they are known to inhibit pathological immune responses. An explanation of the importance/relevance of T regulatory cells in fat is provided in this video:

Click play button

Other cells found in fat include endothelial progenitor cells (EPC), these are useful for healing injured tissue by creating new blood vessels, a critical part of the healing process.

Adipose Tissue-Derived Stem Cells Inhibit Neointimal Formation in a Paracrine Fashion in Rat Femoral Artery

Fat tissue is becoming increasingly recognized as a major contributor to the biochemical balance in the body. For example, during times of obesity, fat tissue produces compounds such as leptin that suppress, or attempt to suppress appetite. Fat tissue contains numerous cell types that control inflammation such as T regulatory cells, and alternatively activated macrophages (Riordan et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009 Apr 24;7:29). Additionally, fat tissue contains several populations of stem cells, including mesenchymal stem cells, and hematopoietic stem cells.

In the study published today, fat mesenchymal stem cells were isolated from rats and tested for ability to promote healing of the endothelium, which is the lining of the blood vessels. The endothelium is very important because damaged endothelium is believed to be the cause of atherosclerosis.

The first set of experiments that the scientists performed was to try to “differentiate” or transform the fat mesenchymal stem cells into endothelial cells in the test tube. Treatment of the stem cells with an optimized mix of chemicals, called “endothelial growth media” resulted in cells that resembled endothelium based on expression of proteins on the cell surface. Specifically, the “home grown” endothelial cells expressed the markers Flt-1 and responded to SDF-1, a protein known to attract endothelial cells.

In order to mimic the condition of atherosclerosis development, a wire was inserted into the femoral artery and used to “scratch” the endothelial surface so as to produce an injury. In animals that did not receive stem cells, the injury resulted in a lesion that resembled the atherosclerotic plaque. When stem cells that were differentiated into endothelial cells were administered in the injured area, the lesion size was reduced, or in some animals completely absent.

Most interesting in the study was that the differentiated endothelial cells did not incorporate themselves into the existing blood vessel endothelium. Specifically, the injected cells could have been injected even outside of the endothelium and prevention of injury would be seen. These data suggest that the endothelial cells generated in vitro seem to work by producing therapeutic factors that accelerate healing, but not necessarily by replacing the function of the old endothelium. One interesting next step of this research may be to purify the growth factors made, and administer them instead of stem cells as a therapeutic approach to prevention of atherosclerosis.

Stem Cell Therapeutics Corp. Announces Private Placement

Stem Cell Therapeutics is a biotechnology company from Calgary Canada that is developing a novel type of stem cell therapy: instead of administering stem cells, they give drugs that activate the patient’s own stem cells. The company licensed intellectual property from Dr. Samuel Wise, which covered the use of agents such as erythropoietin, human chorionic gonadotropin (hCG), parathyroid hormone, and prolactin, for stimulation of the body’s own stem cells.

The company published a paper describing their Phase I clinical trial of hCG entitled "Open labeled, uncontrolled pharmacokinetic study of single intramuscular hCG dose in healthy male volunteers" the August 2009 issue of the International Journal of Clinical Pharmacology and Therapeutics. Which assessed feasibility of administration of hCG and demonstrated it can cross the blood brain barrier by assessment of cerebral spinal fluid levels of the hormone. These data were important because it allowed the company to enter Phase II clinical trials for treatment of stroke using a combination of the red blood cell stimulating hormone erythropoietin, together with hCG.
If successful, this will be one of the very few companies that uses injectable drugs as a substitute for stem cells. This is an important paradigm shift in cell therapy since many of the current therapies require manipulation of cells outside of the body, which is expensive and currently limited to a small number of clinical trials.

The company is also working on other neurological conditions including multiple sclerosis and traumatic brain injury, both of which are in preclinical stages of development, however animal data to date has been promising. For multiple sclerosis the hormone prolactin is being used as a stem cell stimulatory drug, whereas for brain injury hCG and erythropoietin are used, in a similar model as in the current stroke trials.

Today Stem Cell Therapeutics announced that it has closed on two separate financing deals that together yielded $2,186,941 in gross proceeds. The first deal was a brokered private placement through J.F. Mackie & Company Ltd for $1,138,741, whereas the second was a non-brokered offering of $1,048,200. The company reported that proceeds will be used for general working capital purposes.