Stem Cell Therapy for Relapsing-Remitting MS

Bonnie, who suffers from relapsing-remitting multiple sclerosis (MS) received a combination of human umbilical cord mesenchymal stem cells and adipose-derived cells administered daily over the course of 5 days.

Just wanted to send an update as I am really excited! I received my very first stem cells on 10/22/13, it has been less then a month and I am happy to report that I have tons more energy by balance is improving every day, I have no more foot drop and not even a healing I was looking for but I put my glasses on the other day only to find they made my vision blurry I didn’t need them, I am already saving for my next treatment! I can’t thank you all enough as I feel like I have a future with my 5 small children now, if you ever need someone to talk to future patients I would be happy to scream my praises! Looking forward to more and more improvement!

Sincerely,
Bonnie Barrington

For more information about MS clinical investigations at the Stem Cell Insitute: Stem Cell Therapy for Multiple Sclerosis

Professor Arnold Caplan discusses mesenchymal stem cell therapy for multiple sclerosis

Professor Caplan is “The father of the mesenchymal stem cell (MSC)”. In this clip, he describes a mouse experiment using human MSCs in a mouse model of MS. The experiment shows that it’s possible to place human cells in mice that have normal immune systems. He continues to discuss the astounding results.

Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients.

Zhang Z, Fu J, Xu X, Wang S, Xu R, Zhao M, Nie W, Wang X, Zhang J, Li T, Su L, Wang FS.
Research Center for Biological Therapy.

Link to Abstract on National Institutes of Health Website

Abstract

OBJECTIVE:
HAART largely decreases morbidity and mortality in chronic HIV-1-infected patients, but immune nonresponders (INRs) with full viral suppression still fail to reverse the immune deficiency. This study evaluated the safety and immunological responses of human umbilical cord mesenchymal stem cell (MSC) therapy in HIV-1-infected INRs.

DESIGN AND METHODS:
A total of 13 HIV-1-infected INRs were enrolled in this pilot prospectively open-labeled controlled clinical trial. Seven patients were administered three umbilical cord-MSC transfusions at 1-month interval during 12-months of follow-up, whereas six control patients were treated with saline in parallel. Immunological parameters were monitored in these patients throughout the trial.

RESULTS:
All patients tolerated the umbilical cord-MSC transfusions well throughout the trial. The umbilical cord-MSC transfusions preferentially increased circulating naive and central memory CD4 T-cell counts and restored HIV-1-specific IFN-γ and IL-2 production in the INRs. These enhancements in immune reconstitution were also associated with the reduction of systemic immune activation and inflammation in vivo.

CONCLUSIONS:
umbilical cord-MSC transfusions are well tolerated and can efficiently improve host immune reconstitution in INRs, suggesting that such treatments may be used as a novel immunotherapeutic approach to reversing immune deficiency in HIV-1-infected INRs (ClinicalTrials.gov identifier: NCT01213186).

Umbilical Cord Stem Cells: Regeneration, Repair, Inflammation and Autoimmunity – Neil Riordan PhD (Part 2 of 2)

In part 2, Dr. Riordan discusses how mesenchymal stem cells can affect tissue repair in spinal cord injury and in heart failure; benefit to heart is not the actual MSCs modeling new tissue. It is due to the trophic effects of MSC secretions; In rats, severed spinal cords re-grew after MSCs were implanted but the human MSCs did not form new cord tissue. The trophic factors secreted by the MSCs enable the spinal cord to repair itself.; Trophic factors from MSCs modulate the immune system by blocking clonal expansion of cytotoxic T-cells; There are 35 ongoing clinical trials using mesenchymal stem cells for autoimmune diseases; Safety of donor MSCs; Every mother has MSCs from each baby she has carried; Mothers have a lower incidence of autoimmune disease; Lifespan of mothers increased linearly with each child up to 14; There are 85 ongoing clinical trials using donor MSCs. Allogeneic MSCs from bone marrow have been approved in Canada and New Zealand to treat graft vs. host disease; limbal cells used in corneal transplants are MSCs; MSCs are useful in preventing donated organ rejection; glioma growth was found to be inhibited by MSCs; MSCs eliminated breast cancer in rats.

VIDEO – The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (Part 7 of 7)

In this final segment, Prof. Caplan discusses: Mesenchymal stem cells make anti-bacterial molecules, How retro-orbital injections of human MSCs cure mice with cystic fibrosis infected by pneumonia aeruginosa 70% of the time, The process by which MSCs kill bacteria in the body, Clinical trial for using MSCs to treat sepsis, “MSCs are drug stores for sites of injury or inflammation. They are site regulated, multi-drug delivery vehicles”, MSC transitions: ostegenic, trophic and immunomodulatory, MSCs are not stromal cells. They are not part of the connective tissue, The name of the MSC has changed. It is a “Medicinal Signaling Cell” and has nothing whatsoever to do with “stem-ness”, Cell plasticity, transdifferentiation in the mesengenic process.

VIDEO – The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (Part 6)

In part 6, Prof. Caplan discusses Trophic properties of mesenchymal stem cells; MSCs for heart disease; MSCs homing to heart injury site and also to skin incision site; MSCs limit left ventricular thinning following infarction; Trophic properties of MSCs: anti-apoptotic, anti-fibrotic, anti-scarring, angiogenic, mitotic; phase 1 data for allogeneic MSCs show fewer arrhythmias, prompt heart rate recovery, and improved lung function; autologous adipose tissue-derived stromal vascular fraction for treatment of chronic heart disease; Active mesenchymal stem cell clinical trials around the world; Induction therapy with autologous MSCs in kidney transplants; MSCs can coax neural stem cells to become oligodendrocytes, curing mice with MS using allogeneic human MSCs.

VIDEO – The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (Part 4)

In part 4, Prof. Caplan talks about isolating mesenchymal stem cells from bone marrow using specialized; calf serum choosing different assays to prove multipotency – osteogenesis, chondrogenesis, adipogenesis; point of care with autologous bone marrow in orthopedic surgery; tissue engineering bone with lineage restricted MSCs; banking bone discarded bone marrow from orthopedic surgeries for future use;

The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (VIDEO Part 3)

In part 3, Professor Caplan discusses the science behind mesenchymal stem cells: sources of mesenchymal stem cells (MSCs), because all MSCs are pericytes one can find them in any tissue that has blood vessels, pericytes express markers of MSCs, frequency of pericytes in human tissue, most abundant source of pericytes is adipose (fat) tissue, adipose-derived stem cells, how MSCs are separated from fat, chemistries MSCs from different tissues are not the same, MSCs function at sites of injury, mesenchymal stem cell homing in mice, MSCs don’t make fat, they don’t make muscle. They come back as pericytes, and not all pericytes are MSCs.

The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (VIDEO Part 1)

Professor Arnold Caplan of Case Western Reserve University is widely regarded as “The Father of the Mesenchymal Stem Cell”. This lecture is a “must see” for anyone interested in stem cell therapy. In Part 1, Prof. Caplan proposes a new regulatory pathway for approval of cell-based therapies and regenerative medicine called “Progressive Approval” to replace the current US FDA system that is now in place.

Prof. Caplan was speaking in Panama City, Panama at “La Medicina Del Futuro En El Presente”, an event organized by the honarable Ruben Berrocal MD, Minister of Science, Technology and Innovation SENACYT (National Secretariat of Science, Technology and Innovation) and Prof. K. S. Jagannatha Rao, Ph.D., FNASc, FABAP, FASB, FLS (Reino Unido) Director INDICASAT-AIP (Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia — Institute for Scientific Research and High Technology Services).

Arnold Caplan PhD of Case Western Reserve University and Riccardo Calafiore of Perugia University in Italy tour Medistem stem cell lab in Panama

Arnold Caplan PhD, Neil Riordan PhD and Riccardo Calafiore MD at Medistem Labs Panama

Arnold Caplan PhD, Neil Riordan PhD and Riccardo Calafiore MD at Medistem Labs Panama

Professor Arnold Caplan (left) and Professor Riccardo Calafiore (right) pose with Medistem Labs Panama Founder, Neil Riordan, PhD. Dr. Riordan is also the Founder of Stem Cell Institute in Panama City, Panama.

Prof. Caplan and Prof. Calafiore were in Panama City with Amit Patel MD to speak at “La Medicina Del Futuro En El Presente”, an event organized by the honarable Ruben Berrocal MD, Minister of Science, Technology and Innovation SENACYT (National Secretariat of Science, Technology and Innovation) and Prof. K. S. Jagannatha Rao, Ph.D., FNASc, FABAP, FASB, FLS (Reino Unido) Director INDICASAT-AIP (Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia – Institute for Scientific Research and High Technology Services).

Prof. Caplan is a Professor of Biology and General Medical Sciences (oncology) at Case Western Reserve University and the Director of the Skeletal Research Center at Case Western Reserve. Prof. Caplan is widely regarded as “The father of the mesenchymal stem cell”.

Prof. Calafiore is the Head of the Division of Endocrinology and Metabolism at the Medical School at the University of Perugia, Italy and Director of the Interdisciplinary Laboratory for Endocrine and Organ Transplant at the University of Perugia School of Medicine. He is also a director at ALTuCELL.

Amit Patel, MD, MS, is an associate professor in the Division of Cardiothoracic Surgery at the University of Utah School of Medicine and Director of Clinical Regenerative Medicine and Tissue Engineering at the University of Utah

Neil Riordan PhD is Founder of Stem Cell Institute in Panama City, Panama and the President of Medistem Panama. He is also CEO of Aidan Products.