Medistem and Licensee ERCell Receive Russian Regulatory Approval for the RECOVER-ERC Trial

The clinical trial, Non-Revascularizable IschEmic Cardiomyopathy treated with Retrograde COronary Sinus Venous DElivery of Cell TheRapy (RECOVER-ERC), is being led by Principle Investigator Dr. Leo Bockeria, Chairman of the Backulev Center http://www.bakulev.ru/en/about/director/.

The Backulev Center is Russia’s premier institute for cardiovascular surgery and cardiology. Every year the Backulev Center performs approximately 30,000 diagnostic and treatment procedures, which includes 7,000 open heart surgeries and more than 12,000 angioplasties.

The RECOVER-ERC trial will recruit 60 patients with congestive heart failure, and randomize the patients into 3 groups of 20 patients each. Group 1 will receive 50 million ERC, Group 2 will receive 100 million and Group 3 will receive 200 million. Each group will have 15 patients receiving cells and 5 patients receiving placebo. Efficacy endpoints include ECHO and MRI analysis, which will be conducted at 6 months after treatment.

“I joined Medistem and personally invested into the company because of its strong science and intellectual property position. It is this strong science that has allowed for such a rapid progression of the ERC product from discovery, to animal studies, and now to approval for initiation of efficacy finding studies,” said Dr. Vladimir Bogin, President and Chairman of Medistem, and a Yale-trained physician practicing in the USA. “As a medical doctor I see the suffering and lack of options for patients with CHF. I am proud that our team is able to offer hope.”

This is the second clinical trial that Medistem has been granted approvals for. In September 2011, the company received FDA clearance for beginning a 15 patient trial treating critical limb ischemia patients together with Dr. Michael Murphy at Indiana University.

“We are especially grateful to our Russian licensee ERCell LLC which has worked intensely with our CRO and the Backulev Center in laying down the groundwork for this approval,” said Vladimir Zaharchook, Vice President and Vice Chairman of Medistem. “To our knowledge, ERCell is the only company in Russia working on a stem cell product that can be reproducibly manufactured, frozen, and sold as a drug, not a procedure.”

“This approval is a key milestone for ERCell. Given that Russia has one of the highest incidences of heart failure per capita in the world, we are confident that we can make a difference in patients’ lives and position Russia as an international leader in cell therapy,” said Tereza Ustimova, CEO of ERCell.

About Medistem Inc.
Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf. ERC can be purchased for scientific use through Medistem’s collaborator, General Biotechnology http://www.gnrlbiotech.com/?page=catalog_endometrial_regenerative_cells.

Cautionary Statement
This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Stem Cell Institute in Panama Collaborates on New Method of Treating Diabetes-Associated Heart Disease

Zhang et al. Journal of Translational Medicine

Diabetes is associated with numerous “secondary complications” including premature heart disease, renal failure, critical limb ischemia (an advanced form of peripheral artery disease) and diabetic retinopathy. One of the common features of these secondary complications is that they are all associated with low levels of circulating endothelial progenitor cells. We have previously discussed the interaction between inflammation and low levels of circulating endothelial progenitor cells http://www.translational-medicine.com/content/7/1/106. It appears that the uncontrolled sugar levels in the blood cause generation of modified proteins, which initiate low level, chronic inflammation. One of the major mechanisms by which sugar- modified proteins induce inflammation is by stimulating a molecular signaling protein called Toll like receptor (TLR)-4. Generally TLR-4 is used by the body to sense “danger”, that is, to sense pathogens, tissue injury, or various factors that may negatively affect the well-being of the host.

In a collaborative study between Stem Cell Institute Panama, Medistem, and the University of Western Ontario, Canada, it was observed that TLR-4 is associated with induction of heart cell (cardiomyocyte) death in diabetic animals. The scientists demonstrated that suppressing the gene encoding for TLR-4 resulted in prevention of heart disease. The results were published in the article Zhang et al. Prevention of hyperglycemia-induced myocardial apoptosis by gene silencing of Toll-like receptor-4. J Transl Med. 2010 Dec 15;8(1):133. TLR-4 is known to recognize bacterial endotoxin, fragments of degraded extracellular matrix, as well as the stress protein HMBG-1.

In the current experiment, mice were made diabetic by administration of the islet-specific toxin streptozotocin. Diabetic mice were treated with double stranded RNA specific to the gene encoding TLR4. It is known that when cells are treated with double stranded RNA, the gene that is similar to the double strand is silenced. This process is called “RNA interference”.

Seven days after mice became diabetic, as evidenced by hyperglycemia, the level of TLR4 gene in myocardial tissue was significantly elevated. This suggested that not only does hyperglycemia activate TLR4, which was previously known, but that expression of this pro-inflammatory marker actually is increased. Indeed it may be possible that triggers of TLR4 actually act in an autocrine manner in order to increase cell sensitivity

In order to determine whether TLR4 was associated with the cause of cardiomyocyte death, animals were administered the double stranded RNA in order to suppress levels of TLR4. When this was performed the level of cardiomyocyte death was markedly reduced. This is an important finding since usually scientists think of TLR4 as a molecule that activates inflammation through stimulation of the immune

The authors conclude by stating that new evidence is presented suggesting that TLR4 plays a critical role in cardiac apoptosis. This is the first demonstration of the prevention of cardiac apoptosis in diabetic mice through silencing of the TLR4 gene.

The research finding that TLR4 is implicated in death of cardiac cells means that agents that suppress it, such as double stranded RNA, may be useful for incorporation into stem cells in order to make the cardiac cells that are derived from the stem cells resistant to death induced by conditions of stress such as hyperglycemia.

Beike Biotechnology Reports on 114 Patients Treated with Novel Cord Blood Stem Cell Protocol

New Approach Opens Door to Expanded Uses of Cord Blood Stem Cells
Beike Biotechnology Press Release

Beiki Biotechnology and Medistem Inc (MEDS.PK) report positive safety data in 114 patients with neurological conditions treated using Beiki’s proprietary cord blood stem cell transplantation protocol. In the peer-reviewed paper “Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions” available at http://www.translational-medicine.com/content/pdf/1479-5876-8-75.pdf ., a team of researchers from Bieke Biotechnology, Medistem Inc, University of Western Ontario, Canada, and University of California, San Diego, describe biochemical, hematological, immunological, and general safety profile of patients with neurological diseases who were observed between 1 month to 4 years after treatment. No serious treatment associated adverse effects were observed. The current report aims to serve as an “expanded Phase I” study, with efficacy data to be published in a subsequent paper.

“Although it is well understood in the scientific community that cord blood stem cells are useful in treatment of terrible degenerative diseases ranging from heart failure, to stroke, to ALS, to multiple sclerosis, the fact that under current protocols immune suppressants are necessary, limits the use of cord blood to treatment of leukemias in the United States and Western Europe.” Said Dr. Hu CEO of Beike . He continued “This is the first time someone has demonstrated on such a large patient population feasibility of non-matched, non-immune suppressed, cord blood stem cell transplantation.”

The current medical dogma states that patients receiving cord blood transplants need to be immune suppressed, otherwise the cord blood will cause a devastating condition termed graft versus host. Due to the potentially lethal effects of immune suppression, cord blood stem cells are not used on a widespread basis, with the exception of treating aggressive leukemias. The technology developed by Beike allows the use of cord blood stem cells without immune suppression, thus opening up the use of this procedure to a much wider patient population.

“It is our honor to collaborate with Beike on this seminal publication. We at Medistem have been developing the concept of “universal donor endometrial regenerative cells”, which are a new stem cell that does not require tissue matching. The fact that Beike has been able to demonstrate safety of transplant by manipulating an established stem cell source is a substantial advancement for the field.” Said Thomas Ichim, CEO of Medistem Inc. “Concretely speaking, the findings of the current paper could open up the use of cord blood for non-hematological diseases, something that to date has not been performed on a wide-spread basis.”

Protein Found on Endometrial Regenerative Cells Inhibits Immune Attack

Medistem Inc. (PINKSHEETS: MEDS) announced today publication of a peer reviewed paper identifying a molecule found on the company’s lead product, the universal donor Endometrial Regenerative Cell (ERC), as a key component of cellular escape from immune attack. The study, entitled “Resistance of neonatal porcine Sertoli cells to human xenoantibody and complement-mediated lysis is associated with low expression of alpha-Gal and high production of clusterin and CD59” was published in the journal Xenotransplantation as a collaboration between Medistem and the Institute of Organ Transplantation, Tongji Hospital, in Wuhan, China.

The study found that CD59, a molecule made by ERC, plays an important role in protecting cells from immune rejection when placed in contact with immune components from another species. The ERC is a mesenchymal-like stem cell that Medistem discovered in 2007 capable of generating heart, lung, brain, muscle, blood vessel, pancreas, liver, fat and bone tissue. The original description of this cell, which won the “Publication of the Year Award” may be found at http://www.translational-medicine.com/content/pdf/1479-5876-5-57.pdf.

“One of the fundamental aspects of Medistem’s lead product, the Endometrial Regenerative Cell (ERC), is its ability to function without the need for tissue matching. In other words, the ERC stem cells act as universal donors. We have previously published that human ERC are effective in treating mice having a condition that resembles critical limb ischemia (see paper http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf ). We now believe that expression of the molecule CD59 on ERC may be one of the mechanisms by which these human cells can be used not only as a universal donor for humans, but also for the treatment of numerous diseases across a variety of animal species.” Said Thomas Ichim, CEO of Medistem.

Medistem has filed an IND with the FDA for treatment of critical limb ischemia (severe obstruction of the arteries that leads to decreased blood flow to the extremities) with ERC. Currently the company is in the process of completing additional experiments requested by the FDA before clinical trials can commence. Through physician-initiated compassionate use mechanisms Medistem has already published on human use of ERC in treatment of heart failure, Duchenne Muscular Dystrophy, and multiple sclerosis. A recent peer-reviewed paper describing ERC in treatment of heart failure may be found at http://www.intarchmed.com/content/pdf/1755-7682-3-5.pdf.

Medistem Reports Rheumatoid Arthritis Patient Success Using Adult Stem Cell Protocol

SAN DIEGO, CA – (Marketwire – June 21, 2010) – Medistem Inc. Medistem Inc. together with the Stem Cell Institute reported today publication in the peer reviewed journal Cellular Immunology its paper titled “Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease,” which describes the first use of a patient’s own fat stem cells for treatment of rheumatoid arthritis.

How Fat Stem Cells May Work on Autoimmune Diseases

In collaboration with the company Vet-Stem Inc, the University of Western Ontario, and The University of California San Diego, Medistem scientists detailed the scientific rationale for use of patient’s own fat derived stem cells for “reprogramming” the immune system of patients with autoimmune diseases such as rheumatoid arthritis. A case report of a 67-year-old American woman who recovered from rheumatoid arthritis after intravenous treatment with adult stem cells is provided.

“We have been treating companion animals for osteoarthritis and rheumatoid arthritis for over five years, achieving and publishing excellent efficacy data,” said Robert Harman, CEO of Vet-Stem. “Medistem’s identification of potential mechanisms of action, as well as translation of this technology into the clinic, supports the importance of our findings.”
Medistem previously identified and filed intellectual property covering the co-purification of high concentrations of T regulatory cells using protocols that enrich for adipose derived stem cells, a finding that was later confirmed and published by Diane Mathis’s group from Harvard University (Feuerer et al. Nat Med. 2009 Aug;15(8):930-9). T regulatory cells are used by the body to control autoimmunity, which is explained in this video by Thomas Ichim, the CEO of Medistem.

“We are very excited that Medistem’s protocol for isolation of a patient’s own fat derived stem cells and T regulatory cells, which produced promising results in multiple sclerosis, appears to be useful in rheumatoid arthritis, another autoimmune disease,” said Neil Riordan, Chairman of Medistem.

In a 2009 paper Medistem together with Vet-Stem and University of California San Diego reported substantial clinical improvement in a small group of multiple sclerosis patients treated using a similar protocol. The paper is available at www.translational-medicine.com.

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at www.translational-medicine.com.

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.