Bone Marrow Stem Cells Significantly Improve Cardiac Mortality Rate in Heart Disease Patients

Texas Heart Institute researcher, Emerson Perin MD, PhD revealed that heart patients who were treated with bone marrow-derived adult stem cells died at a significantly lower rate that those who did not receive stem cells. Dr. Perin’s scientific findings represent yet another positive step in the ongoing fight against heart disease.

Dr. Perin is the Director of Clinical Research for Cardiovascular Medicine and Medical Director for the Stem Cell Institute at the Texas Heart Institute in Houston, Texas. Dr. Perin’s study showed that patients treated with stem cells were 90% less likes to die from an adverse cardiac event than patients who were not treated with stem cells.

“We obtained remarkable results from our study in which we injected stem cells derived from the bone marrow of a healthy donor into patients with heart failure. Heart function and exercise capacity improved in some cell-treated patients. Most importantly, cell therapy significantly reduced cardiac adverse events, including death. Three of 15 (20%) control patients died of cardiac causes, whereas only 1 of 45 (2%) cell-treated patients had a cardiac-related death. Despite the small numbers, our findings showed that cell therapy significantly improved cardiac mortality,” said Dr. Perin.

Medistem and Licensee ERCell Receive Russian Regulatory Approval for the RECOVER-ERC Trial

The clinical trial, Non-Revascularizable IschEmic Cardiomyopathy treated with Retrograde COronary Sinus Venous DElivery of Cell TheRapy (RECOVER-ERC), is being led by Principle Investigator Dr. Leo Bockeria, Chairman of the Backulev Center http://www.bakulev.ru/en/about/director/.

The Backulev Center is Russia’s premier institute for cardiovascular surgery and cardiology. Every year the Backulev Center performs approximately 30,000 diagnostic and treatment procedures, which includes 7,000 open heart surgeries and more than 12,000 angioplasties.

The RECOVER-ERC trial will recruit 60 patients with congestive heart failure, and randomize the patients into 3 groups of 20 patients each. Group 1 will receive 50 million ERC, Group 2 will receive 100 million and Group 3 will receive 200 million. Each group will have 15 patients receiving cells and 5 patients receiving placebo. Efficacy endpoints include ECHO and MRI analysis, which will be conducted at 6 months after treatment.

“I joined Medistem and personally invested into the company because of its strong science and intellectual property position. It is this strong science that has allowed for such a rapid progression of the ERC product from discovery, to animal studies, and now to approval for initiation of efficacy finding studies,” said Dr. Vladimir Bogin, President and Chairman of Medistem, and a Yale-trained physician practicing in the USA. “As a medical doctor I see the suffering and lack of options for patients with CHF. I am proud that our team is able to offer hope.”

This is the second clinical trial that Medistem has been granted approvals for. In September 2011, the company received FDA clearance for beginning a 15 patient trial treating critical limb ischemia patients together with Dr. Michael Murphy at Indiana University.

“We are especially grateful to our Russian licensee ERCell LLC which has worked intensely with our CRO and the Backulev Center in laying down the groundwork for this approval,” said Vladimir Zaharchook, Vice President and Vice Chairman of Medistem. “To our knowledge, ERCell is the only company in Russia working on a stem cell product that can be reproducibly manufactured, frozen, and sold as a drug, not a procedure.”

“This approval is a key milestone for ERCell. Given that Russia has one of the highest incidences of heart failure per capita in the world, we are confident that we can make a difference in patients’ lives and position Russia as an international leader in cell therapy,” said Tereza Ustimova, CEO of ERCell.

About Medistem Inc.
Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf. ERC can be purchased for scientific use through Medistem’s collaborator, General Biotechnology http://www.gnrlbiotech.com/?page=catalog_endometrial_regenerative_cells.

Cautionary Statement
This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Excerpts from Interview with Dr. Amit Patel, Director of Regenerative Medicine, University of Utah by Thomas Ichim, Ph.D, CEO of Medistem Inc

www.thelatestwith.com

Ichim: Which one was the first stem cell trial for cardiac conditions?

Patel: It is like one of those questions like who did the first heart operation. There is a lot of debate as to what was the first to use cells plus therapy and there have been a number of trials. Myoblasts were performed in 2000, the Chinese reported work performed in 1999 or 2000, and the Ralfstock guys in Germany 2000s. So there are a number of trials, including ours, all in the 2000-2003 period that where being conducted almost simultaneously.

Ichim: Pardon me for asking because I should really know this, which one was yours?

Patel: The original CABG plus cells, which was performed in South America and India.

Ichim: Lets talk about Phase 2 trials in cardiac, we all have seen the excellent co-development deal between Cephalon and Mesoblast that happened in December of last year and we are all interested in how far are they?

Patel: The Cephalon-Mesoblast work is interesting. They are doing a 60 patient randomized trial here in the US in patients with Class II-IV heart failure. From the data thus far released there is a significant reduction in treatment group in terms of adverse events as compared to the placebo control group, they have not reported any efficacy data in terms of ejection fraction and the like.

Something unique from the data they presented was that they showed up to 2/3 of the control group were class III heart failure and 2/3 of the treatment group were class II. The early data was very interesting and promising. The safety of the data was very eloquent and reproducible. One thing that was very unique was Erik Dukker’s European large animal acute MI data which was the best in terms of scar reduction for any allogeneic MSC that I have seen to date. That data, if it pans out, in humans will be very interesting.

Ichim: How did Mesoblast administer their cells? Did they use balloon catheter in the heart failure patients?

Patel: They used NOGA mapping and administration, in chronic heart failure, both ischemic and non-ischemia. They did not do acute myocardial infarction in this trial.

Their trial had similarities with our Phase II Aastrom, which also uses NOGA administration in treatment of patients with ischemic and non ischemic heart failure. It is different in that we were looking only at class III/IV heart failure.

Ichim: How is that trial coming along?

Patel: Ours is completed from the patient recruitment and treatment perspective.

We are waiting 6 month data. Our trial was a three center trial between myself, Tim Henry and Mark O’Costa. These three centers were heavy enrollers. We had low adverse events so far. This study involves patient’s own bone marrow stem cells expanded for 12 days using Aastrom’s proprietary bioreactor system.

Ichim: Lets go back to my question about Mesoblast. Remember we were chatting at the meeting about this. There seems to be a lot of different players in this field that are all using bone marrow derived stem cells. Obviously I believe endometrial derived stem cells possess numerous advantages. But there is Osiris’s mesenchymals, there is Athersys who are using Catherine Verfaille’s cells that seem to be like mesenchymal stem cells except for their smaller size. What is the cell that Mesoblast is using? Are they just another type of mesenchymal stem cell?

Patel: By name they call them the cells mesenchymal precursors. The Mesoblast cells are unique in that they express STRO-1 and VLA-4.

In my opinion everyone’s stem cells have unique properties and surface markers be they Osiris, Mesoblast, Athersys, Allocure, and a couple other products that are bone marrow based.

What is unique to see will be the IP landscape, are they same cells or cousins? This may be a situation like the CD133 versus CD34. In this field we know that all mesenchymal stem cells are not the same but the question will be how similar or different are they when you apply them clinically?

Ichim: Did we forget to mention any other ones?

Patel: I am sure that we did, but not for want to miss them but just because they have not made enough noise. Actually the one trial we forgot to discuss was the Athersys phase I which Warren Sherman from Columbia presented using the Cricket catheter, which is adventitial delivery, that was a very safe trial. It will be interesting to see how they do in the next generation for their phase II AMI study.

Ichim: That was very interesting. That was the one with the bizarre catheter that actually had a couple of needles in it?

Patel: That catheter had one needle, it causes a microperforation to allow for perivascular injection. This is a very innovative concept since people that use the standard intracoronary delivery techniques seem to have a lot of washout of the cells.

Ichim: I don’t get it. So they are making a small hole in the blood vessel, why is it that there is no bleeding or damage?

Patel: The microperforation is way too small. You do not perforate into the pericardium. It only barely perforates. However it does require a well highly trained skill set to manipulate that catheter. If you had been listening to Dr. Sherman’s presentation you would have seen that there were no catheter-related injuries.

Ichim: (Laughing). OK, what about the large Brazilian data? That was also a session that I didn’t listen through in entirety.

Patel: That data was 10 year follow-up on several Brazilian studies. The work was initially performed in heart failure using NOGA by Hans Doneman, then they had Emerson Perin and Jim Willerson. We also had our work which involved CABG. That was groundbreaking work that set the foundations for a lot of the cardiac cell therapy that is being performed today. We are still waiting to hear the outcomes of the studies that were funded by the government of Brazil including the work on Chagas, dilated cardiomyopathy, and CABG.

Ichim: Speaking of South America, what did Jorge Tuma present?

Patel: This was incredible data that had patients who have been followed for 8 years. Cell administration was performed via the retrograde technique which we developed with him. The original experiments involved bone marrow mononuclear cells isolated by ficoll, heap-starch, CD34, etc, he is now using the Harvest system for autologous bone marrow mononuclear cell collection. He presented data on ten patients treated with this.

Ichim: This is what I love about interviews, I can ask all sorts of questions about things that I should know but I don’t. What exactly is this “retrograde technique”? I have heard you mention it several times.

Patel: We access the venous system of the heart. We occlude the outflow and deliver the biologic into the heart. What is unique is that the venous system does not get the same atherosclerosis as the arterial system. This procedure has been around since 1898..its been around from back then…the idea was can we give oxygenated blood back to the heart. It was in the 50s and 60s when Illahi started to implement this. I use this in my heart operations to give chemicals and nutrients into the heart backwards during open heart operations…so I said how

Administration of cells using the retrograde technique takes me half hour to do. This appears to be a safe and cost efficient means to deliver a biologic to the heart on incredibly sick patients.

Ichim: To put in things in perspective regarding cell administration. I know that NOGA is expensive and not too many centers have it. But how long does it take to do a NOGA administration of stem cells into the heart?

Patel: 1-2.5 hours, usually 90 minutes at best, you are manipulating the inside of the heart so there is a risk of irregular rhtyums, also low risk of perforation

Ichim: I still don’t really understand this retrograde technique. How is it that the cells actually enter the heart? Do they actually cross into the tissue?

Patel: You block the outflow of the heart and under pressure you push the cells into the venous system. So you have created a column of cells. You have antegrade blood flow and retrograde stop flow, so the cells either go into the tissue or perforate the sinus…perforate the sinus is very rare, less than 1 % in over a couple hundred patients. These are microperforations in the venous system so it doesn’t require emergent surgery…all of the patients in which this has occurred have done well.

Juventas presented some data in large animals in which the SDF plasmid showed a significant uprgulation using retrograde techniques in contrast to other means of delivery.

Ichim: To switch topics I saw you on CNN about spraying stem cells on poor patients with bad burns, how do the cells go inside of the tissue?

Patel: We add calcium and thrombin, it looks like jello if you were to spray it into the petri disue, so you have retention by tissue adhesion and the mechanical properties of the collagen, thrombin and calcium, so you are creating a matrix for your biologic. So it really is spray on and it actually sticks there.

Ichim: I remember you now based in Utah, what ever happened to that company in your neck of the woods Allocure? How are they doing these days?

Patel: The last I heard they completed Phase I trial here in Utah, they were giving at the time of heart surgery for renal production. They have a bone marrow mesenchymal cell product. The trial is completed, we are looking to see what their next study will be. Will the stick to renal protection or will they follow other companies by entering CLI, heart failure, etc.

Ichim: You know, I was impressed by that company C3 or something like that, they were using differentiated cells for heart?

Patel: That was a Phase I/II trial by Joseph Bartnak where they have a bone marrow mesenchymal cell that was cultured in a procardiac cocktail. It was administered by noga or endocardial mapping. And again the data looked interesting…we look forward to their next trial and when they come to US

Ichim: What they were doing was really new in my humble opinion. It seems to me like everyone in this field is administering undifferentiated cells based on the belief or hope that the damaged tissue will program the undifferentiated stem cell to become a cardiomyocyte. To your knowledge are there other people using differentiated or semi-differentiated cells?

Patel: Yes of course. There is Capricor, Eduardo Marban’s company. They are taking a biopsy of the patient’s own heart, grow up the cells and put them back in. They don’t put the cardiospheres back in because they are too large but put in some cells derived from cardiosphere grown in vitro. One of the issues they are facing is that their procedure is very much dependent on the starting material. They were able to do biopsy but because there was large variability in the weight of the starting tissue, it is important to figure out how to get enough

Ichim: Conceptually it seems counter-intuative to take out heart from a patient with heart failure !

Patel: People do right heart biopsy in transplant patients, doing native heart biopsy you are always concerned about damaging the valve. Raj who was doing the procedure for them is a great interventionalist, but have to make sure that the procedure is designed so that other interventionalists who may not have his skill set can do it. The concept is great but manufacturing and reproducibility is important.

Adult Stem Cell Clinical Trials Showing Success

A Number of Clinical Trials Using Adult Stem Cells Are Showing Early Success

Dozens of adult stem cell treatments are moving through clinical trials and showing early success, raising hopes that some could reach the market within five years. ‘It will only take a few successes to really change the field,’ said Gil Van Bokkelen, chief executive of Athersys and chairman of the Alliance for Regenerative Medicine. ‘As you see things getting closer and closer to that tipping point, you’re going to see a frenzy of activity take place.’ Many of the trials focus on heart disease and inflammatory conditions, some of the biggest markets in medicine. The cells used are derived from adult tissue such as fat, or bone marrow, thereby circumventing the ethical concerns raised by the use of cells derived from embryos.

Data for the most part remains early, but as more results emerge, pharmaceutical companies are beginning to take note. ‘A lot of big companies are looking to place bets on some Phase II products once that data has been confirmed,’ said Paul Schmitt, managing partner at Novitas Capital. ‘Even now they’re attending all the medical meetings and talking to all the stem cell companies.’ Steven Martin, from Aspire Capital Partners LLC said they were willing to be patients as the benefits from treatment could be enormous. ‘My philosophy in the stem cell space is that it’s very difficult at this point to pick the winners and losers,’ he said. ‘We believe that over time there will be some very significant clinical progress, and valuations will improve, but we’re still a long way from an approved therapy.’

Aastrom Biosciences recently presented promising results from a mid-stage trial of its treatment for patients with critical limb ischemia, a disease in which blood flow to the extremities is restricted, at the American Heart Association’s annual meeting. A mid-stage trial from Australia’s Mesoblast Ltd showed its stem cell product reduced the rate of heart attacks and the need for artery clearing procedures by 78 per cent. ‘We’re actually developing products now,’ said Timothy Mayleben, chief executive of Aastrom, which is using cells derived from a patient’s own bone marrow to develop treatments for cardiovascular disease. ‘For the first time you are starting to see data being presented at major medical meetings.’ Pfizer Inc, Johnson & Johnson and Roche Holding AG are members of the Alliance for Regenerative Medicine, a nonprofit group that promotes awareness of the field. Pfizer has a regenerative medicine unit and a partnership with Athersys. But their projects are small as they want to wait to see data in hundreds of patients. The promise of stem cells, which have been used for 40 years in bone marrow transplants, lies in their ability to repair tissue, reduce inflammation, regulate the immune system, and respond to calls for help from multiple places inside the body. Stem cells are the body’s master cells – blank slates that renew themselves and mature into specific cell types in the heart, muscle and other organs.

Embryonic stem cells are uniquely capable of differentiating into every type of mature cell in the body, and were long viewed as the most promising for regenerating tissue. But harvesting stem cells from embryos requires the destruction of the embryo itself, a process opposed by conservative Christian groups. Moreover, their endless capacity to divide can lead to the formation of teratomas, or stem cell cancers. Recently, Geron Corp, the world’s leading embryonic stem cell company, said it could no longer fund its stem cell work and would focus on developing cancer drugs. It closed its trial for spinal cord injury. Unlike embryonic stem cells, adult stem cells have a more limited capacity to differentiate, but appear able to reduce inflammation and promote blood vessel formation. Furthermore, they can respond to damage in the body in a flexible and dynamic way, offering advantages over traditional drugs.
‘They seem to be preprogrammed to act some way in tissue repair, not to form an organ or a tissue,’ said Douglas Losordo, head of stem cell research at Baxter International Inc, which is developing cell therapies for heart disease. ‘The cells that we use are very effective at stimulating the formation of new blood vessels, but if I wanted to make a brain cell out of those cells they would not be very good at it.’ These are the type of stem cell treatments, delivered by infusion, injection or catheter, that are being developed today.
‘We wanted to create a product that everyone could receive and not have to match every donor to every recipient,’ said Robert Hariri, chief executive of Celgene’s Cellular Therapeutics unit.

Different types of stem cell are being used for different diseases. Cytori Therapeutics is developing a heart disease product derived from fat cells, for example, while Celgene is using placental cells for Crohn’s disease and rheumatoid arthritis therapies. Fetal cells are also being explored. Neuralstem Inc, for example, is developing treatments for neurological disorders from an aborted fetus. As cell therapies move further through clinical trials, companies will need more money, and funding is scarce.
Yet even if companies remain afloat long enough to bring a product through late-stage clinical trials, it is unclear what regulators like the Food and Drug Administration will require in order to approve them Some believe the regulatory hurdles for treatments derived from a patient’s own cells will be lower than those where the cells come from donors, since there is less risk of cell rejection. However, no clear pathway has yet been established. ‘We need a clear, consistent and rigorous regulatory framework,’ said Athersys’s Van Bokkelen. ‘The FDA is actually willing to provide lots of guidance and assistance to sponsors, if you just ask them.’

PRECISE: Adipose-derived stem cells show utility as therapy

Cardiology Today

PRECISE is The Randomized Clinical Trial of Adipose-Derived Stem Cells in Treatment of Non Revascularizable Ischemic Myocardium, a double blind, placebo-controlled trial involving 27 patients with chronic ischemic heart disease with HF, angina or both, who were not eligible for percutaneous or surgical revascularization. The patients in the study underwent a liposuction to remove adipose tissue from their abdomen, the stem cells were separated and then reinjected directly into the heart. Placebo patients received the same treatment however were injected with placebo in place of stem cells. “These patients were not even able to be transplanted. So these were very high-risk, no-option patients,” said Francisco Fernández-Avilés, MD, with the department of cardiology, Hospital General Universitario Gregorio Marañón, Madrid, and PRECISE investigator.

The patients who were treated with stem cells had improved infarct size at 6 months and peak oxygen consumption compared to the placebo patients. “In my opinion, the results of the PRECISE trial are good enough to reconsider the possibility to start a larger scale randomized trial comparing cells to placebo in terms of left ventricular function, mainly clinical outcomes [like] mortality, HF and ischemia,” Fernández-Avilés said. For the years ahead, Fernández-Avilés said in patients with chronic HF and viability, the answer for stem cell therapy is adipose tissue, “and for patients with no viability, in my opinion, we need more basic investigation to find more effective cells.”

Scientists look to stem cells to mend broken hearts

Cardiac medicine has traditionally been associated with innovative procedures that sometimes where considered heretical to the present day dogma. For example, the first heart transplant, the use of the balloon catheter, the introduction of thrombolytics, all met substantial resistance from the “establishment” in their time. It appears that the next revolution in cardiac medicine is the use of stem cells. Aside from the obvious ethical and moral dilemmas surrounding embryonic tissues, the major controversy has been the belief that heart tissue does not repair itself after it has been lost. However, slowly but surely it appears that support behind the use of stem cells for heart conditions is gaining momentum.

One sign of this is the recent announcement that Britain’s leading heart charity, the British Heart Foundation (BHF), launched a 50 million pound ($80 million) research project into the potential of stem cells to regenerate heart tissue and “mend broken hearts”.

“Scientifically, mending human hearts is an achievable goal and we really could make recovering from a heart attack as simple as getting over a broken leg,” said Professor Peter Weissberg, medical director at the BHF.

One example of research in this area being performed in England is the work of Professor Paul Riley of the Institute of Child Health at University College London (UCL) who has identified a natural protein, called thymosin beta 4, that plays a role in developing heart tissue. He said his researchers had already had some success in using this protein to “wake up” cells known as epicardial cells in mice with damaged hearts. “We hope to find similar molecules or drug-like compounds that might be able to stimulate these cells further,” he told reporters at the briefing.

Currently the most advanced type of stem cell therapy for the heart involves administration of the patient’s own bone marrow cells into the area of heart damage after a heart attack. This work, which was performed in England and internationally, seems to suggest that cardiac muscle may be preserved when cells from the bone marrow produce various growth factors that stimulate stem cells that are already existing in the heart.

Other methods of administering stem cells into the heart include direct injection into the heart muscle during bypass surgery. This is performed experimentally in patients with severe angina on the hope that the injected stem cells will provide support for formation of new blood vessels, called collaterals, which are anticipated to increase the blood flow to the heart and thereby reduce angina.

Currently embryonic or fetal derived stem cells have not been used for treatment of heart conditions in humans. Therefore, at least for now, ethical issues do not seem to be a major obstacle to advancement of stem cell medicine for hearts.

Stem Cell Institute in Panama Collaborates on New Method of Treating Diabetes-Associated Heart Disease

Zhang et al. Journal of Translational Medicine

Diabetes is associated with numerous “secondary complications” including premature heart disease, renal failure, critical limb ischemia (an advanced form of peripheral artery disease) and diabetic retinopathy. One of the common features of these secondary complications is that they are all associated with low levels of circulating endothelial progenitor cells. We have previously discussed the interaction between inflammation and low levels of circulating endothelial progenitor cells http://www.translational-medicine.com/content/7/1/106. It appears that the uncontrolled sugar levels in the blood cause generation of modified proteins, which initiate low level, chronic inflammation. One of the major mechanisms by which sugar- modified proteins induce inflammation is by stimulating a molecular signaling protein called Toll like receptor (TLR)-4. Generally TLR-4 is used by the body to sense “danger”, that is, to sense pathogens, tissue injury, or various factors that may negatively affect the well-being of the host.

In a collaborative study between Stem Cell Institute Panama, Medistem, and the University of Western Ontario, Canada, it was observed that TLR-4 is associated with induction of heart cell (cardiomyocyte) death in diabetic animals. The scientists demonstrated that suppressing the gene encoding for TLR-4 resulted in prevention of heart disease. The results were published in the article Zhang et al. Prevention of hyperglycemia-induced myocardial apoptosis by gene silencing of Toll-like receptor-4. J Transl Med. 2010 Dec 15;8(1):133. TLR-4 is known to recognize bacterial endotoxin, fragments of degraded extracellular matrix, as well as the stress protein HMBG-1.

In the current experiment, mice were made diabetic by administration of the islet-specific toxin streptozotocin. Diabetic mice were treated with double stranded RNA specific to the gene encoding TLR4. It is known that when cells are treated with double stranded RNA, the gene that is similar to the double strand is silenced. This process is called “RNA interference”.

Seven days after mice became diabetic, as evidenced by hyperglycemia, the level of TLR4 gene in myocardial tissue was significantly elevated. This suggested that not only does hyperglycemia activate TLR4, which was previously known, but that expression of this pro-inflammatory marker actually is increased. Indeed it may be possible that triggers of TLR4 actually act in an autocrine manner in order to increase cell sensitivity

In order to determine whether TLR4 was associated with the cause of cardiomyocyte death, animals were administered the double stranded RNA in order to suppress levels of TLR4. When this was performed the level of cardiomyocyte death was markedly reduced. This is an important finding since usually scientists think of TLR4 as a molecule that activates inflammation through stimulation of the immune

The authors conclude by stating that new evidence is presented suggesting that TLR4 plays a critical role in cardiac apoptosis. This is the first demonstration of the prevention of cardiac apoptosis in diabetic mice through silencing of the TLR4 gene.

The research finding that TLR4 is implicated in death of cardiac cells means that agents that suppress it, such as double stranded RNA, may be useful for incorporation into stem cells in order to make the cardiac cells that are derived from the stem cells resistant to death induced by conditions of stress such as hyperglycemia.

Stem Cell Pioneers Honored at Lasker Awards

This year’s Lasker Awards were presented to 6 individuals, two of whom are pioneers in the field of stem cell technology.

Dr. Shinya Yamanaka of Kyoto University in Japan, the first person to develop iPS (induced pluripotent stem) cell technology, received the prestigious award as did Dr. John Gurdon of Cambridge University in England, who pioneered the SCNT (somatic cell nuclear transfer) laboratory procedure. Among the remaining 4 recipients were 3 scientists who led the development of the cancer drug Gleevec, sold by Novartis of Switzerland, and New York City Mayor Michael Bloomberg.

According to Maria Freire, president of the Albert and Mary Lasker Foundation, and in specific reference to Drs. Gurdon and Yamanaka, "These two pieces of research allow us to understand different aspects of stem cells. I think it could lead to personalized replacement therapy to fix cells or damaged tissue."

Dr. Gurdon was the first person, in the late 1950s, to develop the technique that is now known as somatic cell nuclear transfer (SCNT). Taking cells from the gut of a frog, he inserted the nucleus of one cell into a denucleated egg, thereby creating a tadpole with the same genotype of the original frog. Ian Wilmut’s cloning of Dolly the Sheep in 1996 was directly based upon such work, as was Dr. Yamanaka’s achievements with iPS cells a decade later. Both Drs. Gurdon and Yamanaka share the Lasker Award category for basic medical research.

As is not uncommon with pioneering medical and scientific advances, both Drs. Gurdon and Yamanaka overturned conventional wisdom. As Dr. Gurdon, now 76, describes, "The prevailing thought was that as cells differentiate, they lose their ability to generate other cells of any kind." His research demonstrated that such dogma was clearly incorrect.

More recently, Dr. Yamanaka achieved a similar accomplishment as Dr. Gurdon did, but without the use of an egg, on which Dr. Gurdon commented, "We did it by transferring the nucleus of a cell. Amazingly, he does it by adding genes to the cells and some of them go back to being embryo cells." After his accomplishment in the 1950s, Dr. Gurdon thought that it would eventually be possible to clone entire animals, although he adds, "but I did not expect it would be possible to do what Yamanaka did." Now, the procedure that Dr. Yamanaka pioneered has been repeated in stem cell laboratories throughout the world, and is also being used by a number of pharmaceutical companies in drug development. As Dr. Yamanaka describes, "Everyone can do it. You don’t have to have human embryos and you can make stem cells directly from patients." In addition to directing the Center for Induced Pluripotent Stem (IPS) Cell Research and Applications at Kyoto University, Dr. Yamanaka is also senior investigator at the Gladstone Institute of Cardiovascular Disease in San Francisco.

Michael Bloomberg, the Mayor of New York City and the founder and majority owner of Bloomberg News, was awarded the Mary Woodard Lasker Award for Public Service in recognition of his numerous efforts to improve public health in the nation’s most densely populated metroplex. Among other accomplishments, Mayor Bloomberg was recognized by the Lasker judges for his advocacy against handguns as well as his eradication of smoking and trans-fats throughout NYC. According to an official Lasker Foundation statement, there are currently 300,000 fewer New Yorkers who smoke today than in 2002, when Bloomberg first took office. As Ms. Freire formally stated, "Michael Bloomberg understood the impact of second-hand smoking on workers, of smoking on individuals, of trans-fats on heart conditions and obesity. It highlights the courage of an individual to look at scientific data and make policies based on the data for the betterment of the health of people." As further described on the Lasker Foundation’s website, Mayor Bloomberg was chosen for the Award, "For employing sound science in political decision making; setting a world standard for the public’s health as an impetus for government action; leading the way to reduce the scourge of tobacco use; and advancing public health through enlightened philanthropy." This is not the first time that Mayor Bloomberg has been honored for his work in this field, as the Johns Hopkins Bloomberg School of Public Health at his alma mater is named in his honor.

The award for clinical medical research was shared by Dr. Brian Druker of the Oregon Health and Science University, Dr. Charles Sawyers of Memorial Sloan-Kettering Cancer Center, and Dr. Nicholas Lyndon, formerly of Novartis, for their collaborative development of Gleevec, which had sales of $3.7 billion in 2008 alone, for the treatment of blood cancers. The drug has proven to be especially effective as a treatment for chronic myelogenous leukemia, which otherwise is a fatal condition but which becomes manageable with Gleevec, which allows patients "to live with the disease as you do with diabetes or high blood pressure," as Ms. Freire explained.

Established in 1942 by the advertising executive Albert Lasker and his wife Mary, a health advocate, the Lasker prizes are awarded every year to living persons who have made significant contributions to medical science or who have performed public service on behalf of medicine. As described on the Foundation’s website, "The Lasker Awards are among the most respected science prizes in the world. Since 1945, the Awards Program has recognized the contributions of scientists, physicians, and public servants who have made major advances in the understanding, diagnosis, treatment, cure, and prevention of human disease. Lasker Awards often presage future recognition by the Nobel committee, so they have become popularly known as ‘America’s Nobels’. Seventy-six Lasker laureates have received the Nobel Prize, including 28 in the last two decades."

Additionally, the Lasker Awards include a cash prize of $250,000 for each category.

Neuralstem Awarded Adult Stem Cell Patent

The company Neuralstem has announced today that it has been awarded a patent for its latest proprietary technology for an adult stem cell therapy that can be used in the treatment of neurological diseases.

Entitled "Transplantation of Human Neural Cells for Treatment of Neurodegenerative Conditions", the patent also covers manufacturing methods and procedures for future related products, and will be in effect through July of 2026.

According to founding president and CEO, Richard Garr, J.D., "We are gratified to add this important core technology patent to our portfolio. The transplantation of our neural stem cells to treat degenerative conditions of the nervous system is at the heart of Neuralstem’s mission."

Although Neuralstem already holds a number of other patents for embryonic stem cell methods and processes in animal models, the company’s human stem cell product does not involve embryonic stem cells but instead is based exclusively upon adult stem cells that are derived from human adult CNS tissue.

With corporate headquarters in Rockville, Maryland, Neuralstem was founded in 1996 by the current president and CEO, Richard Garr, J.D., along with Merrill Solomon. As stated on the company’s website, Neuralstem describes itself as "a biotherapeutics company utilizing its patented Human Neural Stem Cell technology", which "allows for the isolation of CNS (central nervous system) stem cells from tissue; the expansion in vitro of each cell up to a billion billion times (60 doublings), and the controlled differentiation of the cells into mature, physiologically relevant human neurons and glia."

(Please see the related news article on this website, entitled, "Adult Stem Cells Approved for ALS Clinical Trial", dated September 21, 2009).

A New Quiet Leader is Emerging in the Adult Stem Cell Industry

George Reed, a 73-year-old policeman, was told by his cardiologist that nothing more could be done for him. Having already been through several coronary bypass surgeries, stent procedures, defibrillators and pacemakers, to no avail, Mr. Reed was known by his doctors as a "no-option patient". Since his heart was so weakened by diffuse coronary artery disease, he was disqualified from undergoing even one more invasive procedure.

In fact, there was actually one other option which still remained: adult stem cell therapy. Fortunately for Mr. Reed, he happened to reside in what is quickly becoming a geographic center for pioneering adult stem cell research, namely, Cleveland, Ohio.

A case in point is The Center for Stem Cell and Regenerative Medicine (CSCRM), which was founded in 2003 with a $19.4 million award from the state of Ohio. Located on the campus of Case Western Reserve University, the CSCRM is now known as a "scientific matchmaker", bringing together a number of researchers from academia and private industry who collaborate in the R&D of adult stem cell therapies.

In the 6 years since its inception, the CSCRM has received an additional $13 million in state funding, and it has spun off four new start-up companies, namely, Arteriocyte in 2004, Cell Targeting in 2005, and both Invenio Therapeutics and Juventas Therapeutics in 2007. Together with another Cleveland-based biopharmaceutical company, Athersys, which was one of CSCRM’s original founding partners, the four new start-ups have raised over $235 million in venture capital. Thus far, researchers at CSCRM have conducted 51 clinical trials in which more than 250 patients were treated with adult stem cells, and more than 60 patients were treated with other novel therapies.

According to Debra Grega, Ph.D., executive director of CSCRM, "When we got started in 2003, stem cells were considered very esoteric and not very practical. Now that we’ve progressed into early-stage clinical evaluations and actually are treating patients, we’ve gotten the attention of large pharmaceutical companies, which was absent until now."

Thanks to the collaboration between such pharmaceutical companies, academia and CSCRM, much of which is focused on the development of clinical therapies derived from adult stem cells, patients such as George Reed are now given new hope.

As the local Cleveland article noted, "With little fanfare, Cleveland has become one of the leaders in the relatively young field of adult stem cell therapy."

It would seem as though fanfare and accolades are overdue.