Inflammatory Bowel Disease Treatable With Stem Cells?

Researchers at Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine may have discovered the key to treating inflammatory bowel disease (IBD).

Dr. Graca Almeida-Porada and her team of scientists found a specific stem cell population in cord blood that migrates to the intestine and proliferates there.

Fetal sheep were injected with the stem cells and their intestines were analyzed 11 weeks later.

“These cells are involved in the formation of blood vessels and may prove to be a tool for improving the vessel abnormalities found in IBD,” said Dr. Almeida-Porada.

Intestinal swelling, inflammation and ulcers typically cause abdominal pain and diarrhea in IBD patients. Reducing inflammation is a key to treatment but currently approved drugs are not very effective.

“This study shows that the cells can migrate to and survive in a healthy intestine and have the potential to support vascular health,” said Almeida-Porada. “Our next step will be to determine whether the cells can survive in the ‘war’ environment of an inflamed intestine.”

Stem cell treatment in Panama benefits autistic Glenburn youth

Autism Stem Cell Patient Ken Kelley

As Kenny Kelley of Glenburn awaits an infusion of adult stem cells at a Panamanian city in November 2011, a Panamanian physician holds two syringes containing the cells. Autistic since birth, Kenny has undergone several such infusions since 2009.

As Kenny Kelley of Glenburn awaits an infusion of adult stem cells at a Panamanian city in November 2011, a Panamanian physician holds two syringes containing the cells. Autistic since birth, Kenny has undergone several such infusions since 2009.[/caption]

By Dale McGarrigle, Of The Weekly Staff
Bangor Daily News
Posted Sept. 14, 2012, at 12:17 p.m.

GLENBURN — Now Kenny can read.

Kenny Kelley can now also do many things that other 11-year-olds take for granted. According to his mother, Marty Kelley, that’s because injections of adult stem cells, taken from umbilical cord blood, have helped Kenny to shake off the shackles of autism, with which he was first diagnosed at age 2.

“The results from stem cells can be seen everyday in his amazing thoughts and vast imagination!!,” Marty Kelley wrote in her blog, http://www.kensjourneytorecovery.blogspot.com/. “How lucky we are for such a miracle treatment!”

Autism is a brain disorder found in children that interferes with their ability to communicate and relate to other people. Autism affects 1 in 88 children and 1 in 54 boys. What causes autism has not been established.

Stem cells are the body’s internal repair system and can fix and replace damaged tissue. These unspecialized cells are a blank slate, capable of transforming into muscle cells, blood cells, and brain cells. Stem cells can also renew themselves by dividing and giving rise to more stem cells.

Stem cells taken from umbilical cord blood, such as Kenny received, are the least likely to be rejected.

The stem-cell treatment is the latest effort by Marty and her husband, Donald, to find ways to improve Kenny’s life. The Kelleys also have two other children: Philip, 13, and Caroline-Grace, 6.

First was in-home treatment in a mild hyperbaric oxygen chamber, three hours a day equaling 800 hours over the course of two years, beginning when Kenny was 5 ½ to 6 years old. This was coupled with a Specific Carbohydrate Diet, which restricts the use of complex carbohydrates and eliminates refined sugar and all grains and starch from the diet.

“We saw results right away with the chamber,” Marty recalled in a recent interview. “He made slow gains, such as tracing the alphabet.”

Then the Kelleys discovered on the Internet the story of Matthew Faiella, a New York boy who has been making great strides after stem-cell treatment in Panama for his autism. They decided to follow suit.

Why take this path, when there has been little scientific research into the use of stem cells to treat autism?

“We were willing to do it as long as it’s safe, and I’ve researched this,” Marty said. “Stem cells are very natural. I’m not a scientist, but I care much more than any scientist would, and I would never do anything to hurt my baby.”

When Kenny went for his first stem-cell treatment in July 2009, at the Stem Cell Institute in Costa Rica, Marty assessed the condition of her then 8-year-old son in her blog http://www.kensjourneytorecovery.blogspot.com:

• Behavior: Screaming, aggressive, giggles/silly/inappropriate with his brother or new people, running around, destructive, uncooperative while being dressed, hitting, not potty trained (still wearing diapers).

• Speech: Vocabulary of a 4-year-old. He can talk, but it is difficult for strangers to understand him. Answers some questions, but he does not understand or like why, when, or how questions.

• Physical: A body the size of a 5-year-old boy.

Kenny has had stem-cell treatments in 2009, 2010, and May and November of 2011. The repeated treatments are required because adult stems cells will work repairing cells for a period of time, about six months, then leave the body.

“When I think I’ve seen his skills level out, we’ll go for another treatment,” explained Marty.

What are some of the changes that Kenny has undergone in the past three years? First came the ability to read and clearer speech.

“When he got back, he just picked up a book and started reading, and I could understand every word,” said Mike Hughes, Marty’s brother. “It was like a light just turned on.”

Other gains: Kenny is talking about past events for the first time, and he’s conversational now. He expresses opinions and looking ahead to the future. He was finally potty trained at age 9. He’s doing math now. He’s calmed down considerably. This summer, he went to summer camp, staying overnight for three nights, in the same cabin as Philip.

“There’s no doubt in my mind how much he’s progressing,” Marty said. “We’re working on catching up right now, and how do we best do that?”

The costly treatment, which isn’t covered by insurance, hasn’t been approved yet by the Food and Drug Administration. Despite the fact that the stem cells come from the human body, the cells are considered a new drug by the FDA and are subject to stringent research and testing that can take years.

So this leaves the Kelleys and others like them seeking stem-cell treatment, going overseas to get it.

“It’s just a matter of how much are you going to spend,” Marty said. “There’s no treatment here that was going to do this much for him.”

Beike Biotechnology Reports on 114 Patients Treated with Novel Cord Blood Stem Cell Protocol

New Approach Opens Door to Expanded Uses of Cord Blood Stem Cells
Beike Biotechnology Press Release

Beiki Biotechnology and Medistem Inc (MEDS.PK) report positive safety data in 114 patients with neurological conditions treated using Beiki’s proprietary cord blood stem cell transplantation protocol. In the peer-reviewed paper “Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions” available at http://www.translational-medicine.com/content/pdf/1479-5876-8-75.pdf ., a team of researchers from Bieke Biotechnology, Medistem Inc, University of Western Ontario, Canada, and University of California, San Diego, describe biochemical, hematological, immunological, and general safety profile of patients with neurological diseases who were observed between 1 month to 4 years after treatment. No serious treatment associated adverse effects were observed. The current report aims to serve as an “expanded Phase I” study, with efficacy data to be published in a subsequent paper.

“Although it is well understood in the scientific community that cord blood stem cells are useful in treatment of terrible degenerative diseases ranging from heart failure, to stroke, to ALS, to multiple sclerosis, the fact that under current protocols immune suppressants are necessary, limits the use of cord blood to treatment of leukemias in the United States and Western Europe.” Said Dr. Hu CEO of Beike . He continued “This is the first time someone has demonstrated on such a large patient population feasibility of non-matched, non-immune suppressed, cord blood stem cell transplantation.”

The current medical dogma states that patients receiving cord blood transplants need to be immune suppressed, otherwise the cord blood will cause a devastating condition termed graft versus host. Due to the potentially lethal effects of immune suppression, cord blood stem cells are not used on a widespread basis, with the exception of treating aggressive leukemias. The technology developed by Beike allows the use of cord blood stem cells without immune suppression, thus opening up the use of this procedure to a much wider patient population.

“It is our honor to collaborate with Beike on this seminal publication. We at Medistem have been developing the concept of “universal donor endometrial regenerative cells”, which are a new stem cell that does not require tissue matching. The fact that Beike has been able to demonstrate safety of transplant by manipulating an established stem cell source is a substantial advancement for the field.” Said Thomas Ichim, CEO of Medistem Inc. “Concretely speaking, the findings of the current paper could open up the use of cord blood for non-hematological diseases, something that to date has not been performed on a wide-spread basis.”

Dylan’s hope (Stem Cell Therapy for Cerebral Palsy)

The possibility of using stem cells to treat cerebral palsy
has been suggested by several scientists based on the ability of these cells to:
a) stimulate regeneration of damaged nervous system tissue; b) to prevent
ongoing death of neurons; and c) to directly turn into, or "differentiate" into
neurons. This is explained in the video

http://www.youtube.com/watch?v=egRxgUXDN4Y
.

One type of stem cell therapy that is currently under
investigation for cerebral palsy involves administration of cells from the
umbilical cord blood. This treatment has been the subject of much interest
because of the possibility of using cord blood from other patients. Routinely
performed outside of the United States, Dr. Joanne Kurtzburg from Duke
University has been the first to perform this treatment under the regulations of
the FDA. This recent story provides a personal description of one of the
patients treated.

In May 2009 5-year old Dylan Cain could only speak about 30
words and could not interact with family and friends. Subsequent to receiving a
cord blood transplant Dylan had a "miraculous" recovery according to parents.

"They told us at Duke that it might be months before we saw
any sign of improvement," Mother Jinger Cain said. "Just six weeks after we
returned home, he started to answer questions. His right leg straightened out a
bit, and his vocabulary has expanded amazingly."

"The speech therapist found that Dylan had progressed
5-plus months in the 3 1/2-month period of time, which means he is progressing
faster than his peers," Jinger said. "What is even more impressive is that
before the stem cells and hyperbaric treatments, he was progressing at a rate of
one month for every four months that went by, or three to four months of
development in a year, so he was consistently falling behind his peers. Now he
is progressing five times faster than before, and that has blown away his
teacher and therapists at the school he attends, as well as his doctors."

Jinger said that Dylan’s teacher in Bend told her she has
never seen a child make such gains in her 20 years of teaching.

Successes such as this case have prompted other doctors to
performed clinical trials assessing in a standardized fashion whether stem cells
actually impact cerebral palsy. Dr. James E Carroll, (706) 721-3371, of The Medical College of Georgia has recently announced initiation of a 40 patient placebo controlled trial in patients with cerebral palsy between 2-12. For more information please see the link below.

www.clinicaltrials.gov/ct2/show/NCT01072370?term=NCT01072370&rank=1

Cord Blood Stem Cell Therapy for Cerebral Palsy in Clinical Trial

Cerebral palsy is characterized by hypoxia/reperfusion
induced damaged to the brain in the perinatal period. It is manifested in four main types: a)
Spastic, which occurs in 70-80% of cases and is associated with damage to the
corticospinal tract or the motor cortex; b) Ataxic, occurs in 10%, is
associated with damage to the cerebrum, and causes deficiencies in walks, hearing
and speech; c) Athetoid/dyskinetic is caused by injury to the to the
extrapyramidal motor system and/or pyramidal tract and to the basal ganglia, it
occurs in approximately 20% of cases. Cerebral
palsy is a non-progressive disorder in which recovery does not occur and
treatments revolve around addressing symptomology. The possibility of stem cell therapy for
cerebral palsy was proposed by Cellmedicine several years ago and is discussed
in this video http://www.youtube.com/watch?v=egRxgUXDN4Y
.

One type of stem cell that has been used for cerebral palsy
comes from the cord blood. Usually cord
blood stem cells are used for treatment of hematological (blood) disorders such
as leukemias or genetic metabolic conditions. Cellmedicine proposed the use of cord blood for conditions such as
cerebral palsy
http://www.translational-medicine.com/content/pdf/1479-5876-5-8.pdf
because of: a) its superior growth factor producing ability to other types of
adult stem cells; b) the possibility of using cord blood with minimal matching;
and c) the ability of cord blood stem cells to directly differentiate into
other types of cells relevant to cerebral palsy such as neurons and glial
cells.

In order to test validity of the possibility that cord blood
may be useful for such a condition, the developmental cycle that occurs with
drugs has to be applied. That is,
firstly animal data needs to support the possibility of efficacy, as well as
the safety of the intervention. Secondly, pilot human studies are needed to determine if it is feasible
to administer the cells in patients with the particular disease without
possibility of adverse effects. Thirdly,
formal clinical trials need to be initiated. These usually begin with Phase I trials that assess safety and maximally
tolerated dose, Phase II trials that assess efficacy in a non-blinded manner,
and Phase III trials that seek efficacy in a
double-blind placebo-controlled manner.

Groups like Cellmedicine have been involved in treatment of
patients with cord blood. Additionally,
Dr. Joanne Kurtzburg from Duke has been using the patient’s own cord blood in
treatment of patients with cerebral palsy http://www.youtube.com/watch?v=xLmY7Ps65wQ. Both
of these treatments were considered part of the "practice of medicine" and may
be comparable to "pilot investigations" in that safety data was generated and
the medical procedure for physically administering the cells was
developed.

Today a group at the Medical College of Georgia announced
initiation of Phase I/II Placebo-Controlled, Observer-Blinded, Crossover Study
to Evaluate the Safety and Effectiveness of a Single, Autologous, Cord Blood
Stem Cell Infusion for the Treatment of Cerebral Palsy in Children.

The trial involves 40 patients between ages 2-12 who are
seizure-free and have clinical evidence
of a non-progressive motor disability due to brain dysfunction. The subjects recruited
will not have the ability to sit independently by one year of age or the
ability to walk by 18 months of age.

Patients will be
divided into 2 groups, with the first group receiving red-cell depleted, mononuclear
cell enriched cord blood unit prepared for infusion (treatment) and the second
being administered saline combined with the inert stem cell administration
solution lacking stem cells. The
observer and patient will not know who is receiving cells from which
group.

The main observation endpoints of the trial will be safety of autologous (patient’s own)
cord blood infusion in children with cerebral palsy by repeated follow-up over
one year with clinical and laboratory evaluations. The secondary endpoint will
be determination of whether a beneficial effect has occurred in the
recipients. This will be measured using
a patient questionnaire and standardized Gross Motor Function Measure
evaluation with effects anticipated to be seen within 3-4 months.

Conceptually this study is a very safe one because it is the
patient’s own cord blood stem cells that are being used. This however could also be a negative
issue. There is some evidence that when
stem cells from another individual (allogeneic) are used, it is the reaction
between the recipient and donor that gives rise to production of numerous
growth factors. Since this current
treatment is only using the patient’s own cells, it may be similar to simply
adding your own blood back into you. The
animal studies previously performed involved using human cord blood cells in
mice lacking part of the immune system. Additionally they used much higher concentration of cord blood cells per
kilogram of body weight. Regardless, it
is very important to state that this study lays the groundwork for translation
of numerous stem cell approaches that have previously been used for patient
treatment outside of the US, for US approval.

Parents of patients interested in trial participation should
contact James E Carroll, M.D. the Principle Investigator of the study at 706-721-3371 jcarroll@mcg.edu

Cord blood stem cells help meet minority marrow needs

Leukemias are cancers of the cells that give rise to white
blood cells.  For example in myeloid leukemias the cells that normally would
become the blood cells neutrophils or macrophages start to make copies of
themselves but refuse to mature.  What happens is that the body is flooding with
cells that on the one hand do not protect the patient from disease, and on the
other hand start to interfere with organ function.  In lymphocytic leukemias the
cells that give rise to lymphocytes such as T and B cells, stop maturing. 
Despite advances in our knowledge of the molecular basis for many leukemias, in
many situations the only definitive cure can be achieved through stem cell
transplantation. Traditionally this has been performed using bone marrow stem
cells from donors that are matched with recipients.  The process of
transplantation involves initial destruction of the recipient bone marrow and
leukemic cells by administration of high doses of radiation and chemotherapy. 
Subsequently donor bone marrow is given which contains high numbers of stem
cells.  These donor stem cells eventually take over the function of making blood
and the recipient is cured of leukemia but has someone else’s stem cells inside
of them.

One of the major barriers to complete success of bone
marrow transplantation is that donors must be matched very strictly.  If the
donor is not matched then the immune cells in the bone marrow start to attack
the recipient.  This is called graft versus host disease, and is one of the most
devastating side effects of bone marrow transplantation, which in some cases is
lethal.

The current story from CNN describes a personal experience
of a lady, Diana Tirpak, who could not find a bone marrow donor.  In general it
is rather difficult to find an unrelated matching donor.  In minorities the
process is even more difficult.  Tirpak, a retired school nurse in Hudson, Ohio
was so convinced that the search for a donor was futile that she helped her
husband buy a suit for her funeral.  "I was bound and determined he was going to
look fine at the funeral," she said. 

Fortunately advances in "alternative sources" of stem cells
have saved Tirpak’s life.  While it is known that stem cells reside in the bone
marrow, another source that is only in recent times being appreciated is cord
blood.  Originally cord blood transplantation was restricted to children since
the number of stem cells per cord is relatively small.  However new advances in
transplantation, as well as introduction of "two cord" approaches have opened up
this procedure for adults.

Dr. Mary Laughlin, founder and medical director of the
Cleveland Cord Blood Center stated "Cord blood is rich in stem cells and easier
to match than adult bone marrow because the immune cells are not developed.
Also, patients can get the treatment in about three weeks — as opposed to six
to eight for bone marrow from an adult donor.  That can be a critical time
interval for a patient who is in remission," she said, noting that doctors often
fear a patient’s relapse while awaiting the transplant.

To get a sense of how difficult it is to find bone marrow
donor matches, the National Bone Marrow Registry has more than 12 million donors
that meet the needs of only about 60 percent of Caucasians in the United
States.  In contrast, only 5 to 15 percent of minorities have available donors. 

Another example of the difficulties minorities face in
obtaining a suitable donor is the story of Nathan Mumford, who is
African-American and was diagnosed with leukemia shortly after finishing
college.  "We went through that process, and nobody had a match. Siblings are
the best matches. My brother or my sister wasn’t a match. My friends, aunts,
uncles, cousins, nobody was a match. So, couldn’t go that route," Mumford said. 
Luckily he too was eligible for a cord blood transplant.  "That was an
opportunity," said Mumford, who survived Hodgkin’s disease as a child. "That was
a chance for me to live. I’m not a quitter. I’ve never been a quitter, so I
wasn’t going to quit."

In November of 2004 he was treated by cord blood
transplantation.  Now his leukemia is cured and he claims he is in great shape. 
I just feel amazing," he said. "I have a lot of energy, and I’m just excited
about it."

The use of cord blood transplants among unrelated donors
have risen from 1 percent in 2001 to 24 percent last year, Dr. Laughlin says.

It should be noted that the use of cord blood for leukemias
is different than its use for other conditions that do not need destruction of
the recipient’s bone marrow.  For example in patients with heart failure there
is a need for stem cells that can either directly give rise to new heart cells,
or produce growth factors that activate stem cells in the heart.  The use of
cord blood derived stem cells for heart failure has yielded some positive
results in animal studies and in several individual case reports as seen in this
video

http://www.youtube.com/watch?v=PcFQeRNuPDo