Professor Caplan is “The father of the mesenchymal stem cell (MSC)”. In this clip, he describes a mouse experiment using human MSCs in a mouse model of MS. The experiment shows that it’s possible to place human cells in mice that have normal immune systems. He continues to discuss the astounding results.
Professor Arnold Caplan discusses mesenchymal stem cell therapy for multiple sclerosis
Umbilical Cord Stem Cells: Regeneration, Repair, Inflammation and Autoimmunity – Neil Riordan PhD (Part 2 of 2)
In part 2, Dr. Riordan discusses how mesenchymal stem cells can affect tissue repair in spinal cord injury and in heart failure; benefit to heart is not the actual MSCs modeling new tissue. It is due to the trophic effects of MSC secretions; In rats, severed spinal cords re-grew after MSCs were implanted but the human MSCs did not form new cord tissue. The trophic factors secreted by the MSCs enable the spinal cord to repair itself.; Trophic factors from MSCs modulate the immune system by blocking clonal expansion of cytotoxic T-cells; There are 35 ongoing clinical trials using mesenchymal stem cells for autoimmune diseases; Safety of donor MSCs; Every mother has MSCs from each baby she has carried; Mothers have a lower incidence of autoimmune disease; Lifespan of mothers increased linearly with each child up to 14; There are 85 ongoing clinical trials using donor MSCs. Allogeneic MSCs from bone marrow have been approved in Canada and New Zealand to treat graft vs. host disease; limbal cells used in corneal transplants are MSCs; MSCs are useful in preventing donated organ rejection; glioma growth was found to be inhibited by MSCs; MSCs eliminated breast cancer in rats.
VIDEO – The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (Part 6)
In part 6, Prof. Caplan discusses Trophic properties of mesenchymal stem cells; MSCs for heart disease; MSCs homing to heart injury site and also to skin incision site; MSCs limit left ventricular thinning following infarction; Trophic properties of MSCs: anti-apoptotic, anti-fibrotic, anti-scarring, angiogenic, mitotic; phase 1 data for allogeneic MSCs show fewer arrhythmias, prompt heart rate recovery, and improved lung function; autologous adipose tissue-derived stromal vascular fraction for treatment of chronic heart disease; Active mesenchymal stem cell clinical trials around the world; Induction therapy with autologous MSCs in kidney transplants; MSCs can coax neural stem cells to become oligodendrocytes, curing mice with MS using allogeneic human MSCs.
The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (VIDEO Part 2)
In Part 2, Prof. Caplan discusses the two types of regenerative medicine: tissue engineering and in vivo tissue regeneration, hematapoietic and mesenchymal stem cells. All mesenchymal stem cells are pericytes and have immuno-modulatory and trophic properties
Prof. Caplan was speaking in Panama City, Panama at “La Medicina Del Futuro En El Presente”, an event organized by the honarable Ruben Berrocal MD, Minister of Science, Technology and Innovation SENACYT (National Secretariat of Science, Technology and Innovation) and Prof. K. S. Jagannatha Rao, Ph.D., FNASc, FABAP, FASB, FLS (Reino Unido) Director INDICASAT-AIP (Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia — Institute for Scientific Research and High Technology Services).
The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (VIDEO Part 1)
Professor Arnold Caplan of Case Western Reserve University is widely regarded as “The Father of the Mesenchymal Stem Cell”. This lecture is a “must see” for anyone interested in stem cell therapy. In Part 1, Prof. Caplan proposes a new regulatory pathway for approval of cell-based therapies and regenerative medicine called “Progressive Approval” to replace the current US FDA system that is now in place.
Prof. Caplan was speaking in Panama City, Panama at “La Medicina Del Futuro En El Presente”, an event organized by the honarable Ruben Berrocal MD, Minister of Science, Technology and Innovation SENACYT (National Secretariat of Science, Technology and Innovation) and Prof. K. S. Jagannatha Rao, Ph.D., FNASc, FABAP, FASB, FLS (Reino Unido) Director INDICASAT-AIP (Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia — Institute for Scientific Research and High Technology Services).
Arnold Caplan PhD of Case Western Reserve University and Riccardo Calafiore of Perugia University in Italy tour Medistem stem cell lab in Panama
Professor Arnold Caplan (left) and Professor Riccardo Calafiore (right) pose with Medistem Labs Panama Founder, Neil Riordan, PhD. Dr. Riordan is also the Founder of Stem Cell Institute in Panama City, Panama.
Prof. Caplan and Prof. Calafiore were in Panama City with Amit Patel MD to speak at “La Medicina Del Futuro En El Presente”, an event organized by the honarable Ruben Berrocal MD, Minister of Science, Technology and Innovation SENACYT (National Secretariat of Science, Technology and Innovation) and Prof. K. S. Jagannatha Rao, Ph.D., FNASc, FABAP, FASB, FLS (Reino Unido) Director INDICASAT-AIP (Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia – Institute for Scientific Research and High Technology Services).
Prof. Caplan is a Professor of Biology and General Medical Sciences (oncology) at Case Western Reserve University and the Director of the Skeletal Research Center at Case Western Reserve. Prof. Caplan is widely regarded as “The father of the mesenchymal stem cell”.
Prof. Calafiore is the Head of the Division of Endocrinology and Metabolism at the Medical School at the University of Perugia, Italy and Director of the Interdisciplinary Laboratory for Endocrine and Organ Transplant at the University of Perugia School of Medicine. He is also a director at ALTuCELL.
Amit Patel, MD, MS, is an associate professor in the Division of Cardiothoracic Surgery at the University of Utah School of Medicine and Director of Clinical Regenerative Medicine and Tissue Engineering at the University of Utah
Neil Riordan PhD is Founder of Stem Cell Institute in Panama City, Panama and the President of Medistem Panama. He is also CEO of Aidan Products.
The dual effect of MSCs on tumour growth and tumour angiogenesis
Michelle Kéramidas, Florence de Fraipont, Anastassia Karageorgis, Anaïck Moisan, Virginie Persoons, Marie-Jeanne Richard, Jean-Luc Coll and Claire Rome
Abstract (provisional)
Introduction
Understanding the multiple biological functions played by human mesenchymal stem cells (hMSCs) as well as their development as therapeutics in regenerative medicine or in cancer treatment are major fields of research. Indeed, it has been established that hMSCs play a central role in the pathogenesis and progression of tumours, but their impact on tumour growth remains controversial.
Our results suggest that hMSCs injection decreased solid tumour growth in mice and modified tumour vasculature, which confirms hMSCs could be interesting to use for the treatment of pre-established tumours.
Methods
In this study, we investigated the influence of hMSCs on the growth of pre-established tumours. We engrafted nude mice with luciferase-positive mouse adenocarcinoma cells (TSA-Luc+) to obtain subcutaneous or lung tumours. When tumour presence was confirmed by non-invasive bioluminescence imaging, hMSCs were injected into the periphery of the SC tumours or delivered by systemic intravenous injection in mice bearing either SC tumours or lung metastasis.
Results
Regardless of the tumour model and mode of hMSC injection, hMSC administration was always associated with decreased tumour growth due to an inhibition of tumour cell proliferation, likely resulting from deep modifications of the tumour angiogenesis. Indeed, we established that although hMSCs can induce the formation of new blood vessels in a non-tumoural cellulose sponge model in mice, they do not modify the overall amount of haemoglobin delivered into the SC tumours or lung metastasis. We observed that these tumour vessels were reduced in number but were longer.
Conclusions
Our results suggest that hMSCs injection decreased solid tumour growth in mice and modified tumour vasculature, which confirms hMSCs could be interesting to use for the treatment of pre-established tumours.
Original Link: http://stemcellres.com/content/4/2/41/abstract
Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients
Cell Transplant. 2013 Feb 26. [Epub ahead of print]
El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HA, Maadawi ZM, Ewes I, Sabaawy HE.
Abstract
Spinal cord injuries (SCI) cause sensory loss and motor paralysis and are treated with physical therapy, but most patients fail to recover due to limited neural regeneration. Here we describe a strategy in which treatment with autologous adherent bone marrow cells is combined with physical therapy to improve motor and sensory functions in early-stage chronic SCI patients
In a phase I/II controlled single-blind clinical trial (clinicaltrials.gov identifier: NCT00816803), 70 chronic cervical and thoracic SCI patients with injury durations of at least 6 months were treated with either intrathecal injection(s) of autologous adherent bone marrow cells combined with physical therapy, or with physical therapy alone. Patients were evaluated with clinical examinations, electrophysiological somatosensory evoked potential, MRI imaging, and functional independence measurements.
Chronic cervical and thoracic SCI patients treated with autologous adherent bone marrow cells combined with physical therapy showed functional improvements over patients in the control group treated with physical therapy alone, and there were no cell therapy-related side effects. At 18 months posttreatment, 23 of the 50 cell therapy-treated cases (46 percent) showed sustained improvement using the American Spinal Injury Association (ASIA) Impairment Scale (AIS). Compared to those patients with cervical injuries, a higher rate of functional improvement was achieved in thoracic SCI patients with shorter durations of injury and smaller cord lesions.
Therefore, when combined with physical therapy, autologous adherent bone marrow cell therapy appears to be a safe and promising therapy for patients with chronic spinal cord injuries. Randomized controlled multicenter trials are warranted.