Spinal Cord Injuries Treated With Adult Stem Cells

Researchers have published the results of a study demonstrating both the safety and the feasibility of an adult stem cell therapy for the treatment of both acute and chronic spinal cord injuries.

Scientists at the California-based company, DaVinci Biosciences, in collaboration with the Luis Vernaza Hospital in Ecuador, have conducted a clinical study in which 8 patients were treated with autologous (in which the donor and recipient are the same person) adult stem cells derived from each patient’s own bone marrow. The stem cells were then administered via a proprietary “multiple route delivery technique” to the 8 patients, 4 of whom suffered from acute spinal cord injuries and 4 of whom suffered from chronic spinal cord injuries. The routes of administration included delivery directly into the spinal cord, directly into the spinal canal and intravenously. Throughout the 2-year follow-up period, all 8 patients were observed to improve through the measurement of such parameters as regained mobility and sensation, regained bladder control and confirmation by sequential MRIs of actual morphological regeneration within the spinal cord itself. No adverse side effects were observed.

Approximately 400,000 people in the U.S. alone are estimated to suffer from spinal cord injuries, with approximately 11,000 new cases diagnosed each year. On average, 52% of all spinal cord injuries result in paraplegia while around 47% result in quadriplegia. According to Dr. Rafael Gonzalez, director of R&D for DaVinci Biosciences, “We are pleased to see the publication of our research. It represents a giant step in the process of improving the quality of life in people living with spinal cord injury and other neurodegenerative disorders.”

According to Francisco Silva, president of DaVinci Biosciences, “The outcome of this study is exciting for us and our patients. We plan on expanding and building upon the results. We strongly believe that this is an important first step for realizing the therapeutic application of stem cells for treating diseases and injuries such as spinal cord injury in humans.”

As Dr. Paul Sanberg, director of the Center of Excellence for Aging and Brain Repair at the University of South Florida, adds, “Although there have been numerous studies in animals demonstrating the benefits of stem cell treatment for spinal cord injury, this is the first published study of its kind. It gives patients the possibility that their quality of life can be improved.”

Headquartered in Costa Mesa, California, DaVinci Biosciences has additional facilities throughout North and South America and is involved in a number of parnerships with universities, medical research institutions and hospitals. DaVinci’s primary area of development is focused on cell-based therapeutics and small molecule compounds in the treatment of neurodegenerative disorders such as spinal cord injury, multiple sclerosis, Parkinson’s disease, and ALS (amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease). In collaboration with one of its partners, the company has patented a surgical technique for the effective delivery of cell-based therapies directly into the spinal cord. DaVinci Biosciences is divided into 2 main business units which include DV Biologics, the main research division, and DV Therapeutics, the development division which advances the molecular and cell-based technologies to therapeutic applications.

In the exploding field of regenerative medicine, this new study provides strong evidence that autologous adult stem cells derived from bone marrow offer a safe and feasible therapy which improves the quality of life for patients suffering from acute and chronic spinal cord injury.

Adult Stem Cell Therapy for Diabetes Shows Progress

Once again, the biotech company Opexa Therapeutics announces strong preclinical data for its proprietary diabetes therapy, developed from autologous adult stem cells. The new study demonstrates that adult stem cells harvested from the mononuclear cells of peripheral blood are differentiable into pancreatic-like cells, which mimic the morphology and function of the beta islet cell clusters of the pancreas in their ability to secrete insulin, glucagon and somatostatin, as well as in the expression of pancreatic and endocrine-specific biomarkers and in the high levels of C-peptide, a byproduct of insulin synthesis.

Derived from both healthy and diabetic subjects, the mononuclear cells have yielded strong in vitro as well as in vivo data in animal studies, and further preclinical studies will be conducted for the determination of optimal dosing, delivery, route-of-administration and toxicology. As Opexa advances toward a Phase I clinical trial, primary endpoints for which have already been identified, a protocol for the clinical trial has also already been established in consultation with the FDA and Opexa’s Clinical Advisory Board.

According to Neil K. Warma, president and CEO of Opexa, “I am pleased to see important advances with our stem cell therapy as this technology could offer benefits not only for the treatment of diabetes but also in other disease areas. We are also hopeful to be able to derive one course of treatment from a single blood draw from a diabetic patient which, ideally, would lead to a readily available source of patient-specific beta-cells suitable for autologous cell transplantation.”

As Donna Rill, senior vice president of Operations, adds, “We have developed a manufacturing process based on a small-scale, bag-based system which we believe should yield significant cost savings over typical embryonic stem cell and cadaveric cell manufacturing processes. We have extensive experience with cell therapy technology, having just completed a 150 patient Phase IIb clinical study with our T-cell therapy and we have applied many of the same principles to our stem cell manufacturing process. Much work still remains but we are encouraged with these data.”

Opexa Therapeutics is focused on the development and commercialization of patient-specific autologous cellular therapies for the treatment of autoimmune diseases such as multiple sclerosis and diabetes. In the treatment of multiple sclerosis, Opexa has already achieved excellent results with its lead product candidate, Tovaxin, which is a novel T-cell vaccine that is specifically tailored to each patient’s disease profile and which has recently completed Phase IIb clinical trials. Opexa holds the exclusive worldwide license for the technology that allows the derivation of adult multipotent stem cells from the mononuclear cells of peripheral blood, and which in turn makes possible the large-scale efficient production of monocyte-derived stem cells, without the risk of immune rejection. (Please see the related news article on this website, entitled, “Opexa to Present Data on its Cellular Therapies for Autoimmune Diseases”, dated November 10, 2008, and originally reported in The Wall Street Journal, for more information on Tovaxin).

Opexa therapeutics deals exclusively with adult stem cells, not embryonic stem cells.

Teeth as a Form of Health Insurance

In Mid Cheshire, England, young women with toddlers are being taught to consider their children’s teeth as a form of family “medical insurance”. For £950 (approximately 1,400 U.S. dollars), the company Bio-Eden will store a tooth’s soft pulp, which contains a plentiful amount of adult stem cells that have already been shown to differentiate into a wide variety of tissue types, and which can be used in the future, if necessary, not only to treat the individual from whom the tooth originated but also blood-relatives of that individual.

Bio-Eden supplies participating mothers with a collection kit that includes storage containers and cooling packs for children’s teeth, which parents are instructed to collect as soon as the teeth fall out. If the proper collection containers are not immediately available, the mothers are encouraged to store the teeth in fresh milk in the refrigerator until the teeth can be sent to Bio-Eden along with the appropriate collection supples. According to Vanessa Weeks, sales manager of Bio-Eden, “The process is simple and easy, it is non-invasive and allows you to use something that is normally discarded. The mums are wowed by the possibilities.”

Once the teeth are sent to Bio-Eden, the soft pulp is then divided and stored simultaneously at two separate physical locations. As Ms. Weeks explains, “It means that, in the unlikely event of a major physical threat at our lab, there will still be another sample available.”

Adult stem cells harvested from dental pulp have been shown to differentiate into a diverse range of tissue types which include, most notably, neurological tissue. As such, dental pulp-derived adult stem cells are believed to constitute an excellent source of stem cell therapies that could be used in the treatment of conditions such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, traumatic brain injury and spinal cord injury, among others. (Please see the related news article on this website, entitled, “Brain Tissue Formed From Monkey Teeth Stem Cells”, dated November 12, 2008, and first reported in the journal Stem Cells).

During the sixth week of embryonic development, human deciduous teeth begin forming in utero from the dental lamina which is a band of epithelial tissue that develops from the ectoderm, the outermost germ layer from which cells and tissues of the nervous system also develop. Hence, it is hardly surprisng that adult stem cells which are present in dental pulp are easily differentiable into neurological tissue. Since the outer part of the integumentary system including the epidermis also develops from the ectoderm, it is also not surprising that dental pulp stem cells have been found to develop into a number of cell types that compose these tissues as well. Interestingly, dental pulp has also been found to contain a variety of cell types from the mesoderm, which include chondrocytes (which are found in cartilage and which produce and maintain the cartilaginous matrix), osteoblasts (which are responsible for bone formation), adipocytes (fat cells) and mesenchymal stem cells (highly potent adult stem cells that are also found in bone marrow and umbilical cord blood). Dental pulp stem cells are therefore also believed to be useful as therapies in the treatment of heart disease, diabetes and in the reconstruction of damaged bones and joints, among other ailments. Indeed, the full range of therapies to which dental pulp-derived adult stem cells may be applicable is potentially unlimited.

Even though Bio-Eden is a U.S. company, headquartered in Austin, Texas, Bio-Eden has international laboratories in the U.K. and Thailand which provide services throughout Europe and Asia. Additional sites are currently be planned for Russia, India, Australia and the Middle East.

Bio-Eden is the first company to collect, harvest and cryogenically store adult stem cells that are extracted from deciduous teeth, also known as baby teeth. Bio-Eden is registered with and approved by the U.S. FDA.

As Bio-Eden states on the homepage of their website, next to a picture of a nurse with wings, “One day, the Tooth Fairy could save your child’s life.”

Former Director of N.I.H. Explains Why Embronic Stem Cells are Obsolete

Citing a number of examples which demonstrate the “markedly diminished need for expanding these cell lines for either patient therapy or basic research”, Bernardine Healy, M.D., explains in clear and logical terms why embryonic stem cells are obsolete.

According to Dr. Healy’s article in U.S. News and World Report, “Even for strong backers of embryonic stem cell research, the decision is no longer as self-evident as it was, because there is markedly diminished need for expanding these cell lines for either patient therapy or basic research. In fact, during the first six weeks of Obama’s term, several events reinforced the notion that embryonic stem cells, once thought to hold the cure for Alzheimer’s, Parkinson’s, and diabetes, are obsolete. The most sobering: a report from Israel published in PLoS Medicine in late February that shows embryonic stem cells injected into patients can cause disabling if not deadly tumors.”

As Dr. Healy further explains, “The report describes a young boy with a fatal neuromuscular disease called ataxia telangiectasia, who was treated with embryonic stem cells. Within four years, he developed headaches and was found to have multiple tumors in his brain and spinal cord that genetically matched the female embryos used in his therapy.” (Please see the related news article on this website, entitled, “Fetal Stem Cell Therapy Could Prove Fatal”, dated February 17, 2009).

Such findings should make everyone rethink, among other things, Geron’s upcoming clinical trials with human embryonic stem cells, and Dr. Healy even suggests that the U.S. FDA (Food and Drug Administration) should reconsider the wisdom of having granted such authorization in the first place. According to Dr. Healy, “His experience [the Israeli boy who developed the tumors] is neither an anomaly nor a surprise, but one feared by many scientists. These still-mysterious cell creations have been removed from the highly ordered environment of a fast-growing embryo, after all. Though they are tamed in a petri dish to be disciplined, mature cells, research in animals has shown repeatedly that sometimes the injected cells run wildly out of control – dashing hopes of tiny, human embryos benignly spinning off stem cells to save grown-ups, without risk or concern. That dream was still alive only a few weeks before this report. Within days of Obama’s inauguration, the Food and Drug Administration approved its first-ever embryonic stem cell study in humans: the biotech company Geron’s plan to inject highly purified human embryonic cells into eight to 10 patients with acute spinal cord injuries. (The cells are from a stem cell line approved by Bush because it predated his ban). The FDA should now be compelled to take another look: Are eight to 10 patients enough, or one year of monitoring sufficient, to assess safety? And doctors who participate in the trial will have to ask what every doctor must ask before performing research on a human subject: Were I this patient, would I participate? Would I encourage my loved ones to do so?”

In acknowledging the extraordinary successes that have already been accomplished with adult stem cells, Dr. Healy adds, “Even as the future of embryonic stem cells has dimmed, adult stem cell research has scored major wins evident just in the past few months. These advances involve human stem cells that are not derived from human embryos. In fact, adult stem cells, which occur in small quantities in organs throughout the body for natural growth and repair, have become stars despite great skepticism early on. … Such stem cells can be removed almost as easily as drawing a unit of blood, and they have been used successfully for years in bone marrow transplants. To date, most of the stem cell triumphs that the public hears about involve the infusion of adult stem cells. We’ve just recently seen separate research reports of patients with spinal cord injury and multiple sclerosis benefiting from adult stem cell therapy.”

Even iPS (induced pluripotent stem) cells, which are also not without their own dangers, are more promising than embryonic stem cells, and on this topic Dr. Healy cites not only the inherent medical risks of iPS cells but also the advice of the first scientist who ever isolated an embryonic stem cell, the famous Dr. James Thomson. As Dr. Healy describes, “While these cells [iPS cells] might become a choice for patient therapy in time, scientists are playing this down for now. Why? These embryonic-like cells also come with the risk of cancer. James Thomson, the stem cell pioneer from the University of Wisconsin who was the first to grow human embryonic stem cells in 1998, is an independent codiscoverer of iPS cells along with Japanese scientists. Already these reprogrammed cells have eclipsed the value of those harvested from embryos, he has said, because of significantly lower cost, ease of production, and genetic identity with the patient. They also bring unique application to medical and pharmaceutical research, because cells cultivated from patients with certain diseases readily become laboratory models for developing and testing therapy.”

Finally, Dr. Healy points out another important distinction which is often overlooked, namely, the distinction between the simple act of overturning President Bush’s restriction on the use of federal funding for human embryonic stem cell research, which President Obama has promised to do, and the far more difficult task of repealing the Dickey-Wicker Amendment, which became law under the Clinton Administration and which forbids both the creation and the destruction of embryos for scientific research. In regard to this matter, Dr. Healy has this to say: “The importance of stem cells for medical research has never been greater, and the scientific and public clamor for unimpeded research is fully understandable. But it’s important that Obama and everyone supporting a lifting of the ban be clear with the public on what is involved in this decision; it’s more complex than advertised. The more ethically charged decision – less understood by the public and one Congress has avoided – involves the ban on creating human embryos in the laboratory solely for research purposes. In fact, President Clinton is the one who balked at allowing scientists to use government money for embryo creation and research on stem cells harvested from such embryos; Bush only affirmed the Clinton ban. The scientific community has been able to attract nonfederal money for such work, and it is going on all the time in stem cell institutes. Scientists want relief from the inconvenience and expense of keeping that work and the money that supports it separate from federal dollars. Reversing the Executive Orders of 2 prior presidents on embryo creation, which even the Congress has been unwilling to tackle, is a far bigger issue than lifting the ban on the use of IVF embryos slated for destruction. Obama stands for transparency, and it’s important for him to make sure the public understands his decision, including that all stem cells are not the same or created equally.”

Dr. Bernardine Healy, a cardiologist who has spent more than 25 years practicing medicine, is currently a senior writer and health editor for U.S. News and World Report, and the author of the magazine’s “On Health” column. A graduate of Harvard Medical School, she was one of only ten women out of a class of 120 Harvard Medical School students at that time. She is a former Professor of Medicine at Johns Hopkins University School of Medicine where she was also Director of the Coronary Care Unit and Assistant Dean for Post-Doctoral Programs and Faculty Development. She has served in the capacity of Presidential Advisor under several administrations, beginning in 1984 when President Reagan appointed her as Deputy Director of the White House Office of Science and Technology Policy. In 1991, President George H.W. Bush appointed her as the first woman Director of the National Institues of Health, and in the George W. Bush administration she was appointed in 2001 to the President’s Council of Advisors on Science and Technology where she served as an advisor on bio-terrorism. Additionally, she was President of the American Heart Association from 1998 to 1999, and President and CEO of the American Red Cross from 1999 to 2001, during which time she led the response of the American Red Cross to the terrorist attacks of September 11th, 2001, which included the creation of a $200 million family grant program for the families of victims and the initiation of a stratetic blood reserve from extra blood collections, among other programs. From 1995 to 1999 she was Professor of Medicine and Dean of the College of Medicine and Public Health at Ohio State University. She has written 2 books and coauthored more than 220 peer-reviewed manuscripts on cardiovascular research and health science policy. Despite her numerous administrative, executive and Presidential appointments, from which she became known for her outspoken and innovative policy-making decisions, she has continued to treat patients throughout much of her career. She has also served as a medical correspondent for CBS news.

Multiple Sclerosis Successfully Treated Yet Again With Adult Stem Cells

After participating in a small clinical trial at Northwestern University, Edwin McClure seems to have recovered from multiple sclerosis (MS). Conducted on 21 participants and led by Dr. Richard Burt, the clinical trial involved treating the MS patients with their own adult stem cells. The only drawback of the study, however, was the use of chemotherapy to destroy each patient’s immune system prior to the adult stem cell therapy. Nevertheless, patients such as Mr. McClure have shown dramatic improvement.

Diagnosed with MS four years ago at the age of 18, Edwin McClure underwent a regimen of conventional MS medication but without any results. According to Mr. McClure, “I would get fatigued. I couldn’t deal with the heat. I had really bad balance.” Then he heard about the trial being conducted at Northwestern University in Chicago, and decided to participate. Now, he says, “I really don’t feel like I have multiple sclerosis anymore.” In regard to the chemotherapy, however, he adds, “It was rough.”

Approximately 400,000 people in the U.S. and 2.5 million people globally are estimated to suffer from MS, which is a degenerative, autoimmune, demyelinating disease of the central nervous system, the precise causes of which remain unknown, and a precise cure for which has not previously existed. According to Dr. Burt, however, “Well now for the first time in battling MS, I think you can say there’s a study that’s shown we’ve turned the tide against the disease.”

In actuality, other doctors have already had success in treating patients with multiple sclerosis, but without the brutal and deliberate destruction of the immune system with radiation. As previously reported on this website, prior to receiving the autologous stem cell transplantation in the clinical trial led by Dr. Burt, each patient also underwent immunological myeloablation, in which radiation is employed to destroy the patient’s immune system. While such a procedure had previously been considered a necessary part of the therapy, even though it exposes the patient to potentially life-threatening risks, today an increasing number of doctors are questioning the logic and necessity of subjecting their patients to deliberate immune destruction, and with valid scientific reason. In a publication that appeared over two years ago, in the Journal of Translational Medicine in January of 2007, Dr. Neil H. Riordan et al. posed the following question: “…in patients who are not suffering from a disease that is associated with an aberrant bone marrow such as hematological malignancies or immunological dysfunctions, how is it justifiable to subject them to the high levels of morbidity and mortality associated with immune suppression?” Dr. Riordan and his team of scientists then examined compelling evidence which strongly indicates that pre-transplant immune suppression is unnecessary for many types of autologous hematopoietic cell therapies and even for some allogeneic therapies that utilize “universal donor” cells such as mesenchymal stem cells and the CD34+ stem cells that are found in umbilical cord blood, and for which immune rejection is not even a concern. As Dr. Riordan and his colleagues wrote in their 2007 paper in a section that is subtitled, “Mesenchymal stem cells do not need myeloablation for efficacy”: “Currently there are several ongoing clinical trials in Phase I-III using ‘universal donor’ mesenchymal stem cells in non-conditioned recipients of Crohn’s disease, GVHD (graft-versus-host disease) and myocardial infarction. Although these cells are bone marrow expanded mesenchymal cells, the superior proliferative potential of cord blood mesenchymal cells may allow them not only to escape immune destruction, but also to expand in vivo and mediate therapeutic effects superior to those derived from bone marrow. The fact that regulatory agencies have allowed advancement of ‘off-the-shelf’ universal donor mesenchymal stem cells supports the numerous reports of clinical efficacy in an allogeneic setting.”

Nevertheless, for clinical trials such as those conducted by Dr. Burt at Northwestern University, the adult stem cell therapy offers tangible improvement – at least for those patients who survive the life-threatening destruction of their immune systems from radiation. One can only conclude, therefore, as has already been demonstrated by other doctors at other clinics, that patients would exhibit even greater and faster improvement if they did not have to recover from the deliberate destruction of their immune systems prior to receiving the stem cell therapy, and also if the stem cell therapy would utilize the “superior proliferative potential” of the “immune privileged” adult stem cells that are found in umbilical cord blood.

Edwin McClure and his mother, Bernice, were featured today on the Early Show with CBS television correspondent Debbye Turner Bell.

Multiple Sclerosis Patients Improve After Adult Stem Cell Therapy

Physicians at Northwestern University in Chicago have reported dramatic improvement in patients who were treated with adult bone marrow stem cells for multiple sclerosis (MS). Led by Dr. Richard Burt, the doctors treated eleven women and ten men who had had MS for approximately 5 years but who were still in the early stages of the relapsing-remitting form of the disease, and who had been unresponsive to conventional medical treatment. The adult stem cell therapy consisted of autologous hematopoietic stem cells that were extracted from each patient’s own bone marrow, and follow-up monitoring of the patients was conducted for 3 years.

The adult stem cell therapy was found to halt, and in some cases even reverse, the progression of the disease. Although all of the 21 patients who participated in the clinical trial improved, 17 patients exhibited improvement that was measurable by one point or more on a standardized disability scale, which is considered to be a statistically significant improvement. MRI scans and other imaging techniques showed that remyelination had occurred, and further testing revealed that the stem cell therapy had “cleansed” the immune system of defective white blood cells.

The study confirms similar results obtained by doctors Gianluigi Mancardi and Riccardo Saccardi at the University of Genoa in Italy earlier last year.

Approximately 400,000 people in the U.S. alone have been diagnosed with various forms of MS, which is an autoimmune disease that is characterized by progressive neurological degeneration and which has previously been considered incurable.

Prior to receiving the autologous stem cell transplantation in the clinical trial led by Dr. Burt, each patient also underwent immunological myeloablation, in which radiation is employed to destroy the patient’s immune system. While such a procedure has previously been considered a necessary part of the therapy, even though it exposes the patient to potentially life-threatening risks, today an increasing number of doctors are questioning the logic and necessity of subjecting their patients to deliberate immune destruction. In a publication that appeared in the Journal of Translational Medicine in January of 2007, Dr. Neil H. Riordan et al. posed the following question: “…in patients who are not suffering from a disease that is associated with an aberrant bone marrow such as hematological malignancies or immunological dysfunctions, how is it justifiable to subject them to the high levels of morbidity and mortality associated with immune suppression?” Dr. Riordan and his team of scientists then examined compelling evidence which strongly indicates that pre-transplant immune suppression is unnecessary for many types of autologous hematopoietic cell therapies and even for some allogeneic therapies that utilize “universal donor” cells such as mesenchymal stem cells and the CD34+ stem cells that are found in umbilical cord blood. As Dr. Riordan and his colleagues wrote in their 2007 paper in a section that is subtitled, “Mesenchymal stem cells do not need myeloablation for efficacy”: “Currently there are several ongoing clinical trials in Phase I-III using ‘universal donor’ mesenchymal stem cells in non-conditioned recipients of Crohn’s disease, GVHD (graft-versus-host disease) and myocardial infarction. Although these cells are bone marrow expanded mesenchymal cells, the superior proliferative potential of cord blood mesenchymal cells may allow them not only to escape immune destruction, but also to expand in vivo and mediate therapeutic effects superior to those derived from bone marrow. The fact that regulatory agencies have allowed advancement of ‘off-the-shelf’ universal donor mesenchymal stem cells supports the numerous reports of clinical efficacy in an allogeneic setting.”

Nevertheless, as Dr. Burt and his colleagues at Northwestern University have reported, their adult stem cell procedure, even though it was preceded by the systematic destruction of each patient’s immune system, “not only seems to prevent neurological progression but also appears to reverse neurological disability” in multiple sclerosis, and the results “imply that this is a valuable alternative to the transplant conditioning therapies used so far.”

One can only conclude, therefore, that patients would exhibit even greater improvement if they did not have to recover from the deliberate and life-threatening destruction of their immune systems prior to receiving the stem cell therapy, and also if the stem cell therapy would utilize the “superior proliferative potential” of the “immune privileged” adult stem cells that are found in umbilical cord blood.

Opexa Briefs Shareholders on Corporate Update

The Texas-based stem cell company Opexa Therapeutics, Inc., which is focused on the development of patient-specific cellular therapies for the treatment of autoimmune diseases such as multiple sclerosis and diabetes, today offered a corporate update to its employees, shareholders and the general public.

Perhaps most notable on the list of topics to be addressed was the TERMS (Tovaxin for Early Relapsing Multiple Sclerosis) study that commenced in October of 2008, and which is a Phase IIb multi-center, randomized, double-blind placebo-controlled clinical trial in which 150 patients with the relapsing-remitting form of multiple sclerosis were treated with Tovaxin. The primary efficacy endpoint will measure the “Cumulative number of gadolinium-Enhanced brain Lesions” (CELs) via MRI scans at 28, 36, 44 and 52 weeks, while secondary efficacy endpoints will measure annualized relapse rare (ARR) and new CELs at weeks 28 through 52, as well as the T2-weighted lesion volume when compared to the baseline. Although a comprehensive analysis of the study will be conducted over the next several months, initial data collected thus far are encouraging.

Additionally, a number of discussions are ongoing for various partnerships between Opexa and other companies, such as for the further development of its lead therapy, Tovaxin, as well as of other novel therapies for the treatment for multiple sclerosis, with the anticipation of pivotal trials and future commercialization. A number of possible partnerships are also currently in discussion for the development and commercialization of Opexa’s stem cell therapy to treat Types 1 and 2 diabetes, such as its monocyte-derived stem cells (MDSCs) and monocyte derived pancreatic-like islets (MDI) as a potential therapeutic transplantation product in the treatment of diabetes. Additionally, Opexa has developed proprietary in vitro processes for the derivation of MDSCs from blood monocytes which are then expanded ex vivo and converted to MDI for transplantation into the hepatic main portal vein of diabetic patients. Currently, there is a strong emphasis at Opexa for the further development of MDSC technology as a platform for autologous transplantation therapy in the treatment of diabetic patients via the ex vivo generation of MDIs. Unlike most multipotent stem cells, MDSCs exhibit a specific time-dependent expression of markers that distinguish them from other cells, and which have been shown to differentiate into hematopoietic, epithelial, endothelial, endocrine and neuronal cells.

According to Dr. Dawn McGuire, a neurologist and member of Opexa’s Clinical Advisory Board, “Tovaxin offers the potential for immunomodulatory treatment that is exquisitely individualized for a complex disease that manifests in a highly individual manner. Early results with Tovaxin suggest reduction not only in relapse rates but also in global neuronal loss among patients with the most active disease. I see great promise here.”

Opexa also announced the resignation of COO Dr. Jim Williams, effective February 13, 2009, after which time Dr. Williams will remain actively involved with Opexa in a consulting capacity. According to Neil Warma, president and CEO of Opexa Therapeutics, “With possibly the safest therapy for MS demonstrated to date and some very encouraging efficacy data in clinically relevant relapse rates and disability scores, we are pleased with the level of discussions we are having with potential partners. We are extremely fortunate to have someone of Dr. McGuire’s experience to further advise on our clinical development strategy and steward the clinical development of Tovaxin. Her substantial knowledge and experience in MS, having overseen the early development of Tysabri, will certainly contribute very favorably to our development program and partnering discussions. We are grateful to Jim for having contributed immensely to the development of Tovaxin to date and for overseeing the management of the first-in-class TERMS IIb study and we are pleased he will remain a consultant to the company as we continue forward with our clinical strategy.”

An individualized T-cell therapeutic vaccine which combats the characteristic demyelination of nerve fibers in the central nervous systems of people with multiple sclerosis, Tovaxin consists of attenuated patient-specific myelin-reactive T-cells against peptides of proteins from myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and proteolipid protein (PLP) or combinations thereof.

Tovaxin’s dual mechanism of action has been shown to exhibit, on the one hand, an anti-idiotypic effect which induces an immune response that depletes and regulates the circulating pathogenic myelin-reactive T-cells that attack the myelin sheath of nerve fibers, and, on the other hand, an anti-ergotypic effect which rebalances the overall immune system by causing a shift from pathogenic inflammatory T-cells to anti-inflammatory T-cells.

Multiple sclerosis patient will take treatments at Cellmedicine

Mary Posta suffers from an advanced form of multiple
sclerosis termed

FDA Grants Clearance for the First Clinical Study With Placental Stem Cells

Celgene Cellular Therapeutics (CCT), a wholly owned subsidiary of Celgene Corporation, announced today that the U.S. Food and Drug Administration (FDA) has approved the company’s investigational new drug application to initiate a clinical trial which will test PDA001, an immunomodulatory therapeutic agent that utilizes adult stem cells derived from human placental blood via a proprietary process. Phase I of the clinical process will begin in the U.S. by the end of 2008, in which a multi-center trial will test the therapy on patients with moderate-to-severe Crohn’s disease who have also been found to be refractory to oral corticosteroids such as prednisone and to the immune suppressants that are commonly prescribed for such conditions.

PDA001 is a proprietary placental-derived adult stem cell therapy which is scalable to traditional pharmaceutical levels and which has applications that include immunology, inflammation, hematology and oncology. CCT owns and has patented a variety of proprietary technologies that are directed to novel placental cell types and cell populations, including methods for collecting, processing and storing many types of stem cells from the placenta. PDA001 is the first product to be developed as a result of CCT’s expanding portfolio.

According to Dr. Lloyd F. Mayer, director of the Immunology Institute, professor of medicine and chief of the divisions of clinical immunology and gastroenterology at Mt. Sinai Hospital in New York City, “This first placental-derived stem cell clinical trial is of vital importance given the significant number of people suffering from this debilitating disease. With the positive results from in vivo biodistribution and safety studies, our hope is that PDA001 will suppress the atypical immune and inflammatory reactions involved in the pathogenesis of Crohn’s disease, thereby resulting in a decrease in symptoms and improved quality of life for patients.”

Currently nearly a million people in the U.S. alone suffer from Crohn’s disease, which is a chronic inflammatory condition of the gastrointestinal tract that can be fatal in extreme cases. In the past, conventional medical treatment has consisted of non-specific anti-inflammatory or immunosuppressive agents, none of which are reliably effective and most of which cause side effects which are intolerable in a high percentage of the patients.

According to Robert Hariri, M.D., Ph.D., who is also CEO of Celgene Cellular Therapeutics, “This is the first step in our program to initiate clinical evaluations in a range of indications including not only Crohn’s disease, but other serious inflammatory and autoimmune diseases, such as multiple sclerosis and rheumatological disorders as well. By creating a novel cell therapy from a readily available source that does not require human leukocyte antigen-matching, we are hopeful that we can treat a large number of patients with a variety of devastating diseases.”

Celgene Cellular Therapeutics (CCT) is an adult stem cell company the focus of which is the discovery and development of novel therapeutics based upon adult stem cells derived from human placental and umbilical cord blood. In particular, the human placenta-derived cell therapy known as PDA001 is a cellular immune modulatory agent comprised of a novel cell population that is expanded in culture after being derived from normal, healthy, full-term human placental tissue. PDA001 is known to be genetically stable, displaying a normal diploid chromosome count, normal karyotype and normal senescence after prolonged in vitro culture exposure. Additionally, PDA001 is capable of immunomodulation and has been found to suppress T-cell proliferation while exhibiting immunomodulatory effects on other cell types that are involved in the immune response such as T-cell subsets, macrophages and dendritic cells.

As the first ever to be conducted with placental-derived stem cells, these clinical trials not only represent a milestone in the treatment of Chron’s disease, but also in the therapeutic advancement and availability of this particularly versatile population of adult stem cells.

Opexa to Present Data on its Cellular Therapies for Autoimmune Diseases

The biotech company Opexa announced today that its president and CEO, Neil K. Warma, will deliver a corporate presentation of its patient-specific therapies that are targeted for the treatment of autoimmune diseases such as multiple sclerosis (MS) and diabetes. The presentation will be at Rodman & Renshaw’s 10th Annual Health Care Conference in New York City and will include an overview of the company’s ongoing development program for Tovaxin which is an individualized T-cell therapeutic vaccine that is being developed for the treatment of MS, and which recently yielded positive data from a Phase IIb clinical trial in which 150 patients participated in the multi-center, randomized, double blind, placebo controlled study for the treatment of the Relapsing-Remitting (RR) form of multiple sclerosis. Among other measurements, MRI scans showed statistically significant decreased lesions in those patients who had received Tovaxin.

Tovaxin, which requires only 5 subcutaneous injections per year, is an individualized T-cell therapeutic vaccine based upon attenuated patient-specific myelin-reactive T-cells against peptides of protein from myelin basic protein, myelin oligodendrocyte glycoprotein and proteolipid protein or combinations thereof. Tovaxin is manufactured in Opexa’s in-house cGMP facility.

Tovaxin’s dual mechanism of action combats the demyelination of the nerve fibers in the central nervous system, which is the underlying cause of MS. Clinical results have demonstrated that Tovaxin induces an immune response that depletes and regulates the circulating pathogenic myelin-reactive T-cells that are responsible for attacking the myelin sheath of nerve fibers. Additionally, Tovaxin also rebalances the systemic immune response by causing a shift from pathogenic inflammatory T-cells to anti-inflammatory T-cells.

Opexa Therapeutics is focused on the development and commercialization of patient-specific autologous (in which the donor and recipient are the same person) cellular therapies that are based upon proprietary T-cell and adult stem cell products for the treatment of autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and diabetes. The Company holds the exclusive worldwide license for adult multipotent stem cells derived from mononuclear cells of peripheral blood, which allow large quantities of monocyte-derived stem cells to be produced efficiently for use in autologous therapy, thereby eliminating the risk of immune rejection. In addition to Tovaxin, the T-cell therapy for MS which is currently in Phase IIb clinical trials, Opexa is also in the preclinical development of another product for diabetes mellitus.