Allogeneic and autogolous stem cell therapy combined with physical rehabilitation: A case report on a chronically injured man with quadriplegia

Allogeneic and autogolous stem cell therapy combined with physical rehabilitation - A case report on a chronically injured man with quadriplegia

Daniel Leonard in Panama

This is a research paper written by Rebecca Johnston, Daniel Leonard’s sister. She recently graduated from a Physical Therapy degree program, and wrote her Capstone paper about Daniel’s stem cell therapy treatment in Panama.

Daniel is presented anonymously in the paper, but Rebecca and Daniel have given their permission for this paper to be shared. Daniel’s ASIA scores (pre and post treatment) are in the appendix of this paper.

 

Allogeneic and autogolous stem cell therapy combined with physical rehabilitation: A case report on a chronically injured man with quadriplegia

Abstract:

Background and Purpose: Stem cell therapy for SCI is a potentially promising treatment with increasing interest. This case report describes the use of a particular stem cell therapy protocol for a patient with chronic spinal cord injury, and describes his subsequent therapy and outcomes.

Case Description: The patient is a 29-year-old male who is chronically injured from a cervical spinal injury, resulting in quadriplegia. The patient was treated with a combined protocol of intrathecal (IT) and intravaneous (IV) allogeneic MSC and CD34+ cells and IT autologous BMMC at 6 ½ years post-injury. The results track the patient’s physical therapy progress until 6 months following stem cell treatment.

Outcomes: Recovery of strength in upper extremity and lower extremity muscle groups was noted, along with a functional increase in grip strength, ability to ambulate with assistance, and a significant decrease in daily medications.
Discussion: This case supports further investigation into treatment of chronically injured SCI patients with stem cell therapy followed by physical therapy.

Manuscript word count: 4321

A few highlights:

“After the patient underwent the stem cell treatment and returned to outpatient physical therapy in his hometown clinic in the United States, his MMT scores were tested over the period of 5 months post-stem cell treatment…. The patient did not decrease in strength in any of the muscles tested, and experienced improvements in 6/13 upper extremity muscle groups, and 8/9 lower extremity muscle groups.”

“The patient also had an increase in grip strength. His grip strength was measured by his occupational therapist to be 5 lbs on the right and 25 lbs on the left at one month before his stem cell treatment. Six months later, his grip strength was measured to be 22 lbs on the right and 36 lbs on the left. The patient reported that this increase in grip strength led to functional improvements, such as being able to self-catheterize, which he was completely unable to do since his injury.”

“The patient was also able to ambulate for the first time in 5 years at approximately 4 months after finishing his treatment. He was able to ambulate in partial weight bearing with the harness and max assist of two for 40 yards at .5 MPH.”


The original post on Daniel Leonard’s blog can be found here.

Mesenchymal Stem Cells in Regenerative Medicine:Mechanisms of action, sources, and delivery options

Neil Riordan, PhD, Founder of the Stem Cell Institute in Panama City, Panama will be speaking today, Wednesday, Feb 6 at the STEMSO International Stem Cell Society 2013 Conference in Fort Lauderdale, FL.

The topic of Dr. Riordan’s discussion will be “Mesenchymal Stem Cells in Regenerative Medicine:Mechanisms of action, sources, and delivery options”

The theme for this year’s event is “Autologous Stem Cells: Who gets to decide…”

Multiple Sclerosis Radio – “Stem cells are your body’s natural healing mechanism” – Neil Riordan PhD

For anyone who missed Dr. Riordan’s talk on MS Radio yesterday, below is a link to the replay. Did you know that by age 30, 96% of the mesenchymal stem cells are gone from a person’s bone marrow? Why is MS a disease of the immune system? How can an automated machine analyze a sample of lecithin and buffer that contains no cells and show that it contains 10 million cells per ml? Tune in for these and more.

REPLAY: “Stem cells are your body’s natural healing mechanism” – Neil Riordan PhD

TODAY ON MULTIPLE SCLEROSIS RADIO!
Dr. Neil Riordan, Founder of Stem Cell Institute
Tuesday Feb 5, 2013 at 2 pm EST.

LISTEN ONLINE: Multiple Sclerosis Radio

or call in Join Us LIVE On Air
(347) 327-9317
or Toll-Free
(877) 497-9936

http://www.blogtalkradio.com/msradio/2013/02/05/stem-cells-your-bodys-natural-healing-mechanism-stem-kine-1

Liposuction method can adversely affect adipose tissue-derived stem cell yield and growth

Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure which was published in Cytotherapy (vol. 8 issue 2, 2006, pages 166-177)states that:

“Ultrasound-assisted liposuction resulted in a lower frequency of proliferating adult stem cells, as well as a longer population doubling time of adult stem cells, compared with resection…”

Those seeking adipose stem cell therapy should ask their doctor if he or she is using ultrasound assisted liposuction to collect the fat sample.

*Stem Cell Institute does not use ultrasound assisted liposuction.

Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure
M.J. Oedayrajsingh-Varma1, S.M. van Ham2, M. Knippenberg3, M.N. Helder4, J. Klein-Nulend3, T.E. Schouten5, M.J.P.F. Ritt1, F.J. van Milligen, PhD5,

1 Department of Plastic Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, the Netherlands
2 Department of Immunopathology, Sanquin Research at CLB, Amsterdam, the Netherlands
3 Department of Oral Cell Biology, ACTA-Vrije Universiteit, Amsterdam, the Netherlands
4 Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, the Netherlands
5 Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
http://dx.doi.org/10.1080/14653240600621125, How to Cite or Link Using DOI
Permissions & Reprints

Patients beware: “Point of care” fat stem cell separation and counting kits inaccurate and not US FDA approved for humans.

An informative paper by Mary Pat Moyer, PhD detailing why “same-day” fat stem cell kits that are becoming more common in doctors’ offices across the US can miscount “stem cells” by large factors leading to over estimation of stem cell counts by as much as 20 times or more.

It also states, “no complete harvest and cell isolation systems have been approved by the FDA for autologous SVF harvest for immediate use [in humans].” These are just a couple of the arguments presented that demonstrate why it’s important to process adipose tissue properly in a professional lab setting.

Morrison DG, Hunt DA, Garza I, Johnson RA, Moyer MP*. Counting and Processing Methods Impact Accuracy of Adipose Stem Cell Doses. BioProcess J, 2012; 11(4): 4-17.

Medistem Inc. Annual Letter to Shareholders

SAN DIEGO, CA–(Marketwire – Jan 4, 2013) – Medistem Inc. ( PINKSHEETS : MEDS ) today issues the following letter to shareholders.

Dear Fellow Shareholders,

2012 was marked by significant progress in the development of the Endometrial Regenerative Cell (ERC), our new universal donor “stem cell drug.” Most significantly, we initiated a double blind, placebo controlled clinical study in patients with end stage heart failure, in which ERC were administered via the Medistem’s patent-pending minimally invasive procedure. The clinical trial comprises three escalating doses of ERC with cohorts of 20 patients per dose. To date 14 patients have been treated with no adverse effects, thus demonstrating feasibility of the administration procedure, as well as safety of the cells. Because it is a double blind study, efficacy will not be known until the trial is completed. The clinical trial is being conducted at the Backulev Center for Cardiovascular Surgery in Moscow, Russia, by Academician Leo Bockeria. The company also initiated a 15 patient critical limb ischemia trial in China in collaboration with Shanghai Jia Fu Medical Apparatus Inc. To date two patients have been treated. The trial is based on the Medistem critical limb ischemia study that has been cleared by the FDA.

In addition, we licensed from Yale University the world-wide rights for a patent application using ERC to treat Type 1 diabetes. We also initiated a program in type 1 diabetes, with the goal of filing an Investigational New Drug application before the end of 2013 to allow for clinical trial initiation.

In 2012, researchers at the National Institutes of Health (NIH) independently verified and published a peer reviewed article confirming ERC possess a markedly higher expression of genes associated with new blood vessel formation and stem cell potency compared to bone marrow mesenchymal stem cells. The publication may be found at http://www.translational-medicine.com/content/pdf/1479-5876-10-207.pdf

In addition, our intellectual property was further enhanced with the issuance of patent #8,241,621 covering the use of fat derived stem cells for treatment of autoimmune conditions such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. We have also filed 2 patent applications covering the use of ERC for radiation protection and treatment of traumatic brain injury.

Also, in collaboration with several corporate and academic institutions we published a total of 7 peer reviewed papers in 2012 on collaborative breakthroughs we made in the areas of hepatitis, cancer, and prevention of transplant rejection.

Additionally, this year we added two new advisory board members including Gene Ray, Ph.D., and Alexander Gershman, M.D., Ph.D. Dr. Ray was founder of the Titan Corporation, where he served as CEO and a director of the corporation since the company’s inception in 1981. In 2011, Titan Corporation was acquired by L-3 Communications for $2.6 billion. Dr. Gershman is one of the first surgeons in the world to apply the method of laparoscopic surgery and robotic-assisted surgery to urology. He currently holds several hospital appointments, including: Director of Institute of Advanced Urology at the Cedars-Sinai Medical Center; Director of Urologic Laparoscopy in the Division of Urology, and Harbor-UCLA Medical Center.

Finally, this year marked a major transition in the leadership of the company. I was appointed to the position of CEO on October 26 and Dr. Thomas Ichim transitioned to the position of President and Chief Scientific Officer. Dr. Ichim has done an outstanding job leading the company for the past four years and I look forward to working closely with him at commercializing the ERC product.

In 2013 our objective will be to meet the following milestones:
•Return to “fully reporting” status and listing on the OTCBB
•Appointment of at least one new board member
•Initiation of the FDA cleared critical limb ischemia trial in the USA
•Completing enrollment in the RECOVER-ERC double blind cardiac trial
•Filing an IND for type 1 diabetes.

I want to end by thanking our loyal shareholders for their continued support as Medistem continues on its mission to generate the first practical “stem cell medicine.”

Sincerely Yours,

Dr. Alan Lewis
Chief Executive Officer
Medistem Inc.

About Medistem
Medistem Inc. is focused on the development of the Endometrial Regenerative Cell (ERC), a universal donor adult stem cell product. ERCs possess specialized abilities to stimulate new blood vessel growth and can differentiate into lung, liver, heart, brain, bone, cartilage, fat and pancreatic tissue. These unique properties have applications for treatment of critical limb ischemia (CLI), congestive heart failure (CHF), neurodegenerative diseases, liver failure, kidney failure, and diabetes. ERCs have been cleared by the FDA to begin studies in the United States.

ERCs have several distinguishing advantages to other stem cell therapies: a) Non-invasive method of collection; b) Unlimited supply of cells; isolated from menstrual blood of young healthy donors; c) Economical and scalable to manufacture; d) Exert higher therapeutic activity compared to other stem cells; and e) demonstrated safe in animal and pilot human studies.

Cautionary Statement
This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.
.
.
Contact:.
.

Thomas Ichim, Ph.D.
President and Chief Scientific Officer
Medistem Inc.
9255 Towne Centre Drive
Suite 450
San Diego, CA 92122
858 349 3617
www.medisteminc.com

Could Metabolic Syndrome, Lipodystrophy, and Aging Be Mesenchymal Stem Cell Exhaustion Syndromes?

Eduardo Mansilla,1,* Vanina Díaz Aquino,1 Daniel Zambón,2 Gustavo Horacio Marin,1 Karina Mártire,1 Gustavo Roque,1 Thomas Ichim,3 Neil H. Riordan,3 Amit Patel,4 Flavio Sturla,5 Gustavo Larsen,6, 7 Rubén Spretz,6, 7 Luis Núñez,8, 9 Carlos Soratti,10 Ricardo Ibar,10 Michiel van Leeuwen,11 José María Tau,1 Hugo Drago,5 and Alberto Maceira1

Abstract
One of the most important and complex diseases of modern society is metabolic syndrome. This syndrome has not been completely understood, and therefore an effective treatment is not available yet. We propose a possible stem cell mechanism involved in the development of metabolic syndrome. This way of thinking lets us consider also other significant pathologies that could have similar etiopathogenic pathways, like lipodystrophic syndromes, progeria, and aging. All these clinical situations could be the consequence of a progressive and persistent stem cell exhaustion syndrome (SCES). The main outcome of this SCES would be an irreversible loss of the effective regenerative mesenchymal stem cells (MSCs) pools. In this way, the normal repairing capacities of the organism could become inefficient. Our point of view could open the possibility for a new strategy of treatment in metabolic syndrome, lipodystrophic syndromes, progeria, and even aging: stem cell therapies.

1. Introduction
Metabolic syndrome is recognized today as one of the most important causes of morbidity and mortality in the modern world [1, 2]. Metabolic syndrome is characterized by a variety of symptoms such as obesity with abundant visceral fat, dyslipidemia, carbon hydrates intolerance, insulin resistance and eventually type 2 diabetes, development of arterial hypertension, fat liver disease, sleep apnea, and atherosclerosis with high incidence of myocardial infarction and stroke [3–5]. Although many and different preventive and pharmacological strategies have been applied during the last two decades, the mortality rate of metabolic syndrome continues to be unacceptably high [6, 7]. Then, the central point to consider would be that its critical physiopathogenic pathway has not been discovered yet. As a consequence, it has not been possible so far to design the most appropriate and definitive treatment for it. In this context, it is essential to generate a new framework that could explain the main mechanism of this syndrome development and persistence, allowing then to an effective and enduring cure.

2. The Cellular Perspective
We propose to consider all these issues from a cellular perspective, which could open a pioneering vision for the interpretation and treatment of complex clinical situations such as metabolic syndrome, between many others. It is not generally known that metabolic syndrome is linked to lipodystrophies as much as to obesity [8, 9]. Congenital lipodystrophies (Berardinelli Seip syndrome, Emery-Dreifuss muscular dystrophy, and Dunnigan-type familial partial lipodystrophy) and acquired lipodystrophies (HIV-associated lipodystrophy, cachexia associated with neoplasias, among others) are characterized indeed by the loss of adipose tissue and also by insulin resistance, fat liver disease, dyslipidemia with hypertriglyceridemia, and many other manifestations of the metabolic syndrome [10–12] (Figure 1). In lipodystrophies, there is a continuous and severe loss of adipocytes by apoptosis leading to an inadequate metabolism of free fatty acids, generating severe organic consequences like lipotoxicity, which are closely related to development of metabolic syndrome [13, 14]. On the other hand, in obesity, there is also cellular damage but mainly produced by lipotoxicity, directly related to an excessive ingestion of calories and fats from the diet and by an overwhelmed system incapable of properly metabolizing them [15]. In this situation, hypertrophy and/or hyperproliferation of adipocytes would be the only physiological alleviating mechanism only for a short period of time [16]. Metabolic syndrome, lipodystrophies, and even progeria and aging could be more accurately explained by cellular mechanisms rather than by molecular and biochemical ones.

Figure 1. Lipodistrophic Syndromes

3. The Emergence of Adipocytes and the Perpetuation of Fat
The adipose tissue comprises one of the largest organs in the body. Even lean adult men and women have at least 3.0–4.5kg of adipose tissue, and in individuals with severe obesity, adipose tissue can constitute 45kg or more of body weight. The adipose organ is complex, with multiple depots of white adipose tissue involved in energy storage, hormone (adipokine) production, and local tissue architecture, as well as small depots of brown adipose tissue, required for energy expenditure to create heat (nonshivering thermogenesis) [17]. The potential to acquire new fat cells appears to be a permanent phenomenon in both animals and humans, before or after birth [18]. Therefore, proliferative adipocyte precursor cells must stand as ready to respond to increased demand for energy storage [19]. How adipocytes (fat cells) develop and where their progenitors come from, and for how long and under which circumstances they can provide sufficient support for more fat to be formed while maybe participating in other body functions, is a fundamental biological question with important ramifications for human health and disease. An increase in fat mass associated with obesity could only result from recruitment and differentiation of adipocyte progenitor cells. Despite the recognition of distinct progenitor populations in adipose tissue, it has been assumed that all white adipocytes and their progenitors arise solely from cells of mesenchymal origin [20]. Accumulating evidence suggests that adipocyte progenitors could proceed from bone marrow cells of mesenchymal lineage [21, 22]. Visceral adipose tissue associated with Metabolic Syndrome is a chemotactic niche, whereby mesenchymal stem cells can home to and differentiate into adipocytes to perpetuate its tissue formation [20]. The intertwined epidemics of obesity and diabetes demands an improved understanding of adipocytes and its progenitor cell biology. Adipose tissue mass can expand throughout adult life. Mesenchymal stem cells with a multilineage potential have been isolated from human adipose tissue. Their adipocyte differentiation has been thoroughly studied, and differentiated cells exhibit the unique feature of human adipocytes [22]. One paradigm supports the notion that adipocytes arise from mesenchymal stem cells (MSCs) by a sequential pathway of differentiation. When triggered by appropriate developmental cues, MSCs become committed to the adipocyte lineage. A better knowledge of MSC’s differentiation pathways will surely allow the design of new therapeutic strategies for reconstruction of damaged tissues and for the control or prevention of risks associated with obesity in humans [17, 23, 24]. This process can be divided into two related steps: (1) determination, when multipotent mesenchymal stem cells commit to preadipocytes (these cells exhibit similar morphology compared to stem cells, but they are committed to the adipogenic lineage and are no longer able to transform into osteoblasts, myocytes, or chondrocytes and (2) differentiation, when preadipocytes become mature fat cells. This mechanism is tightly regulated at a molecular level by several transcription factors. Several members of the MAPKinases, bone morphogenic proteins, wingless-type MMTV integration site (Wnt) proteins, hedgehogs, delta/jagged proteins, fibroblastic growth factors, insulin, insulin-like growth factors, and transcriptional regulators of adipocyte and osteoblast differentiation including peroxisome proliferator-activated receptor-gamma and runt-related transcription factor 2 (Runx2) families have been shown to modify the steps of adipogenesis [23]. Despite the well-documented differences in the metabolic and biochemical properties among anatomically distinct depots of fat, the visceral fat contains adult mesenchymal stem cells with developmental potential similar to those isolated from subcutaneous fat in humans [21]. Thus, adipose precursors cells consist of fibroblast mesenchymal like multipotential stem cells generally termed adipose-derived stem cells (ASCs) and exhibit preadipocyte characteristics. They can be isolated, propagated in vitro, and induced to differentiate into adipocytes [25–27]. The adipose vasculature appears to function as a progenitor niche and may provide signals for adipocyte development. Stromal-vascular cells of adipose tissue are adipose precursor and its differentiation in vitro correspond to the sequence: adipoblast (unipotential cells), commitment preadipose cell (preadipocyte), terminal differentiation immature adipose cell, and terminal differentiation mature adipose cell (adipocyte) [28]. Also bone marrow progenitor- (BMP-) derived adipohematopoietic cells via the myeloid lineage have been mentioned as the adipocyte progenitors cells. In any way, these BMP-derived adipocytes could accumulate with age and occur in higher numbers in visceral than in subcutaneous fat, and in female versus male mice. BMP-derived adipocytes may, therefore, account in part for adipose depot heterogeneity and detrimental changes in adipose metabolism and inflammation with aging and adiposity [29]. The development of obesity not only depends on the balance between food intake and caloric utilization but also on the balance between white adipose tissue (WAT), which is the primary site of energy storage, and brown adipose tissue (BAT), which is specialized for energy expenditure. Considerable evidence now supports the view that BAT and WAT are distinct organs. In addition, some sites of white fat storage in the body are more closely linked than others to the metabolic complications of obesity, such as diabetes. White areas contain a variable amount of brown adipocytes, and their number varies with age, strain, and environmental conditions. Recent data have stressed the plasticity of the adipose organ in adult animals. Indeed, under peculiar conditions fully differentiated, white adipocytes can transdifferentiate into brown adipocytes, and vice versa. The ability of the adipose organ to interconvert its main cytotypes in order to meet changing metabolic needs is highly pertinent to the physiopathology of obesity and related to therapeutic strategies. The differentiation between white adipocyte and brown adipocyte lineages occurs in the earliest steps of the fetal development, and both phenotypes are acquired independently [30–33]. Fetal mesenchymal stem cells (fMSCs) can differentiate into brown and white adipocytes. The expression of key adipocyte regulators and markers during differentiation is similar to that in other human and murine adipocyte models, including induction of PPARγ2 and FABP4. The preadipocyte marker, Pref-1, is induced early in differentiation and then declines markedly as the process continues, suggesting that fMSCs first acquire preadipocyte characteristics as they commit to the adipogenic lineage, prior to their differentiation into mature adipocytes. After adipogenic induction, some stem cell isolates differentiated into cells resembling brown adipocytes and others into white adipocytes. Importantly, these cells exhibited elevated basal UCP-1 expression. Thus, fMSCs represent a useful in vitro model for human adipogenesis and provide opportunities to study the stages prior to commitment to the adipocyte lineage. They also offer invaluable insights into the characteristics of human brown fat [34].

4. The Stem Cell Exhaustion Syndrome
In order to self-repair, living organisms have stem cells in central and peripheral locations which can be attracted to sites of injured tissues by “alarm signals” [35]. In this way, these cells proliferate, migrate, and accumulate in those damaged sites [36]. If this situation of “alarm” perpetuates, stem cells could be permanently exhausted from their original locations leading to irreversible disease (Figure 2). Basically, it could be a matter of stem cell quantity and effective availability mainly related to production and consumption in a certain time point when active regeneration is needed. The expected consequences of this situation could be the lack of an appropriate number of stem cells for further tissue replacement and regeneration and eventually the development of disease and aging. It is not completely clear yet if there could be a possible established, coordinated network or a dynamic connection as well as a biological equilibrium between all of these locations. This could finally lead to a constant traffic and exchange of stem cells among all of them in order to provide a perfect mechanism of stem cell provision and replenishment for normal repairment and the perpetuation of complex living organisms on Earth. Although there is not a definitive evidence for a possible alteration of this dynamic, involving an abnormal stem cell depletion kinetic mechanism, it could be interesting to hypothesize about these cell pathways that could open a new era of understanding of disease and therapeutics. For example, we could think that any alteration of this stem cell homeostasis by constant and repetitive trauma, physical hyperactivity, and chronic disease could provoke a persistent disequilibrium inside all these reserve locations. This could promote an irreversible and premature stem cell exhaustion syndrome (SCES), being impossible then for the organism to self-repair and survive.

Figure 2. Stem Cell Exhaustion Syndrome Hypothesis

5. MSCs: The Exhausted Stem Cell?
Tissue and organ damage is constantly taking place in living organisms as a consequence of life itself, diseases, and trauma [37]. A decrease in the endogenous pools of progenitor cells, such as CD34 stem cells and endothelial progenitor cells (EPCs), has been demonstrated to contribute and accelerate the course of cardiovascular disease seen in metabolic syndrome. Several experimental studies have indicated a relevant contribution of these progenitor cells in reendothelization at sites of endothelial injury and in neovascularization at sites of ischaemia. The extent of the EPC pool negatively correlates with cumulative indexes of cardiovascular event risk, such as the Framingham risk score, and multiple risk factors act synergically in reducing EPC, increasing the risk for cardiovascular disease [38–40]. Mesenchymal stem cells (MSCs) are probably the most important specialized repairing cells [41, 42]. MSCs are adult stem cells with the capacity and potential of differentiation towards multiple tissue lineages such as adipose, bone, muscle, cartilage, skin, nervous system, and endothelium between many others [43, 44]. They can produce a large variety of growth factors, and they have immunomodulatory properties that allow them to avoid the immune rejection response when transplanted intra- and even interspecies [45, 46]. Although they reside mainly in the bone marrow (BM) and share with hematopoietic stem cells a similar microenvironment, they are phenotypically very different to them [47, 48]. Also, during the last few years, it has been possible to isolate them from many other sites, like dental pulp, endometrium, peripheral blood, umbilical cord, adipose tissue, and even amniotic fluid [49, 50]. Recent studies have also obtained MSCs from vascular vessels, being proposed that they could be found in the perivascular space throughout the whole body [51]. We will refer to all these precise anatomical locations where MSCs are stored as “MSCs pools,” being the bone marrow the central MSCs pool and the others the peripheral ones (Figure 3). In these pools, MSCs usually stay in a quiescent and undifferentiated state until they are called to proliferate and mobilize by “alarm signals” such as proinflammatory cytokines like INF-α and IL-6 among others and many growth factors like GM-CSF [52–54]. Then, it is possible to think that because of the supercaloric food intake of obese patients with metabolic syndrome, a high degree of proinflammatory substances could be produced and released in different microenvironments, specially the abdominal visceral fat one [55]. This could only lead to the perpetuation of this inflammatory state with a constant emission of “alarm signals,” proliferation, mobilization, and finally an endless sequestration of MSCs into the visceral fat depot [56]. Recently, a research group has found evidence of this adipotaxis phenomenon in an animal model, where the MSCs of the BM migrated attracted to the fat depot by TNF-Alfa [57]. This mechanism could give support to the idea of an abnormal migration of MSCs, in patients with metabolic syndrome, leading at some point to the mentioned irreversible impairment of tissue repairment (Figure 4).

6. MSCs Exhaustion and Aging
Metabolic syndrome incidence increases with the advancement of age [58, 59]. Human aging is another example of organ and tissue deterioration that could have a stem cell deficiency, very similar to that observed in metabolic syndrome. The classical human model of premature aging is the Hutchinson-Gilford Progeria syndrome (HGPS) [60, 61]. Progeria manifestations start at 18 months of age approximately, with alopecia, skeletal defects, distinctive facial appearance, and lipodystrophy [62, 63]. These patients also develop dyslipidemia and arterial hypertension [64]. Almost all of them have atherosclerosis as well as cardio and cerebrovascular disease by 13 years of age with premature death [65]. Progeria is produced by a mutation in the gene that codes for the protein of nuclear membrane Lamin A [66]. This mutation makes MSCs sensitive to apoptosis [67]. This issue could explain why many tissues of mesenchymal origin are specially affected in these patients [68]. HGPS is a pathology of segmental nature, in which the different tissues and organs exposed to a variety of different conditions such as mechanical stress are affected differently [69]. Tissues with different turnover rates would require a different number of stem cells for replacement. For example, hair and muscle cells should need to be replenished by MSCs more frequently than central nervous system ones [70]. In patients with progeria, stem cells are at least in principle irreversible damaged, suffering from early apoptosis [71]. Young peripheral tissues, especially those in continuous turnover, are probably more restricted of new replacing stem cells. In this way, progeria patients usually suffer as it was said from alopecia, vascular damage, and premature death by myocardial infarction or stroke [72, 73]. On the other hand, tissues with a slower turnover rate, such as central nervous system, suffer less notorious and more prolonged deterioration. Their pathology is not seen at all in progeria patients as they do not live long enough to be able to evidence damage of these tissues [74, 75]. An excessive cell turnover without the possibility of a concomitant cell replenishment mechanism, could lead to a slow but progressive deterioration usually seen in living organisms and known as “normal ageing” [76]. From this perspective, all these phenomena could be very similar to those observed in metabolic syndrome, lipodystrophic syndromes, and progeria. There is evidence that TNF-alfa progressively increases with age in adipose tissue which also rearranges itself and becomes dysfunctional with an inadequate response to insulin and increased production of cytokines [77]. This de novo proinflammatory generated environment is followed by a highly sensitive state of adipocytes to lipotoxicity [78] and a possible sequestration of a large number of MSCs especially from the BM central pool, which at the same time becomes progressively exhausted with the passing of time. “Normal aged” BM can be seen infiltrated by fat depots with a very reduced number of MSCs, having the significance of this phenomenon still unknown to date [79] (Figure 5). In other words, all these clinical situations could be explained by a stem cell exhaustion syndrome (SCES) causing an impaired regenerative potential.

7. The New Paradigm: Cell Therapy
Stem cell restoration has already demonstrated therapeutic activities in certain systems. For example, it is known that after a stroke, endogenous stem cells are mobilized from the bone marrow in an attempt to heal the damaged neural tissue. Most interestingly, a recent study demonstrated that stroke patients who exhibit a high level of stem cell mobilization have better functional outcomes as opposed to patients with a lower mobilization [80]. Restoration of stem cell function has been studied in aging, in which senescent endothelium can be replaced by the addition of young endothelial progenitor cells. In animal models, this has been shown to “reverse” endothelial aging [81]. In patients administered GM-CSF in order to mobilize autologous bone marrow stem cells, improvements in endothelial function, as demonstrated by increased responsiveness of flow, have also been proven [82]. More “natural” means of mobilizing stem cells into the periphery include the use of food supplements. It has been reported that administration of “StemEnhance,” a commercially available food supplement made from cyanobacterium Aphanizomenon flos-aquae, induces a transient 18% increase in circulating CD34 cells over the period of one hour after consumption [83]. Another commercially available food supplement, “Stem-Kine,” has been demonstrated to induce a 50–100% increase of CD34 and endothelial progenitor cells in circulation for the observation period of over 2 weeks [84]. Given that similar increases in circulating stem cells have been associated with “health-inducing” activities such as exercise [85] and smoking cessation [86], it may be rationale to examine therapeutic effects of these supplements using functional endpoints. One critical point to consider is whether mobilization would accelerate exhaustion of stem cells in the bone marrow compartment. Given expression of telomerase in the bone marrow hematopoietic stem cells and its ability to be modulated by nutritional [87] and antioxidant interventions [88], it appears that this problem may be at least theoretically addressed. If a stem cell depletion kinetic abnormality (MSCs exhaustion syndrome) is true, then a stem cell therapy approach could be feasible. For instance, ex vivo expansion and reinfusion of MSCs from the patient’s own or from allogeneic donors, as evidence shows that MSCs are not immunogenic at all [44], have been already tested in many clinical trials for different pathologies [89–93]. In the best case scenario, MSCs therapy could retard the onset of irreversible lesions associated with metabolic syndrome or at least partially improve those already present in the organism. Also, the development of bioartificial implants such as in the way of a fat transplant (autologous, allogeneic, or even xenogeneic) could be envisioned [94–96]. This could be an innovative way to provide a new pool of MSCs to the patients [17, 97]; a permanent fat transplant such as the one proposed here could also be enriched with ex vivo expanded MSCs, or even those previously made differentiated into brown adipocytes, becoming in this way an immune privileged niche for the cotransplantation and implantation of different kind of allogeneic cells, tissues, and organs needed for the better functioning and regeneration of living organisms, without the danger of rejection or the need of prolonged administration of immunosuppressive drugs [44, 98–101]. Adipose tissue transplantation has primarily been used as a tool to study physiology and for human reconstructive surgery [102]. Transplantation of adipose tissue is, however, now being explored as a possible tool to promote the beneficial metabolic effects of subcutaneous white adipose tissue and brown adipose tissue, as well as adipose-derived stem cells [103]. Data suggest that the upregulation of brown adipose tissue activity can contribute to a lean and metabolically healthy phenotype in humans; these findings also suggest that the transplantation or stimulation of brown adipose tissue might be used as a therapeutic approach to increase energy expenditure and lower white adipose tissue mass and improve the overall metabolism, also is used as a potential induction of beneficial metabolic effects and treatment of diseases, such as obesity, lipodystrophy, or cardiovascular disease. As the amount of endogenous brown adipose tissue is very limited, identification and manipulation of critical regulators of brown adipose tissue differentiation have been used to engineer brown adipose tissue in order to induce beneficial effects [104, 105]. Ultimately, the clinical applicability of adipose tissue transplantation for the treatment of obesity and metabolic disorders will reside in the achievable level of safety, reliability and efficacy compared with other treatments [17]. In this way, cell therapy undoubtedly will be the most promising therapeutic strategy of this century not only for metabolic syndrome, but also probably for lipodystrophies, progeria, aging, and many other diseases [106–110]. Finally, beyond generating new pharmacological and natural healthy nutritional regimens, we should start thinking in the provocative frontiers of stem cell mechanisms that we must necessarily explore in order to decrease, in the next few years, the deleterious effects of the above-mentioned pathologies. If a “stem cell exhaustion syndrome” could be the cause of all these morbid states, we will surely be able to generate the best modalities to prevent and treat them. Also, may be defeating at last, the erroneous idea of irreversible aging.

References
1. Saito I, Iso H, Kokubo Y, Inoue M, Tsugane S. Metabolic syndrome and all-cause and cardiovascular disease mortality: Japan Public Health Center-based Prospective (JPHC) Study. Circulation Journal. 2009;73(5):878–884. [PubMed]
2. Zimmet P, Alberti G. The metabolic syndrome: progress towards one definition for an epidemic of our time. Nature Clinical Practice Endocrinology and Metabolism. 2008;4(5):p. 239.
3. Reaven GM. The metabolic syndrome: requiescat in Pace. Clinical Chemistry. 2005;51(6):931–938. [PubMed]
4. Pappolla MA, Bryant-Thomas TK, Herbert D, et al. Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology. 2003;61(2):199–205. [PubMed]
5. Junyent M, Gilabert R, Jarauta E, et al. Impact of low-density lipoprotein receptor mutational class on carotid atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis. 2010;208(2):437–441. [PubMed]
6. Ceska R. Clinical implications of the metabolic syndrome. Diabetes and Vascular Disease Research. 2007;4(3):S2–S4. [PubMed]
7. Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J. The metabolic syndrome: a global public health problem and a new definition. Journal of Atherosclerosis and Thrombosis. 2005;12(6):295–300. [PubMed]
8. Capeau J. From lipodystrophy and insulin resistance to metabolic syndrome: HIV infection, treatment and aging. Current Opinion in HIV and AIDS. 2007;2(4):247–252. [PubMed]
9. Stacpoole PW, Alig J, Kilgore LL, et al. Lipodystrophic diabetes mellitus. Investigations of lipoprotein metabolism and the effects of omega-3 fatty acid administration in two patients. Metabolism: Clinical and Experimental. 1988;37(10):944–951. [PubMed]
10. Capeau J, Magré J, Lascols O, et al. Diseases of adipose tissue: genetic and acquired lipodystrophies. Biochemical Society Transactions. 2005;33(5):1073–1077. [PubMed]
11. Lichtenstein KA. Redefining lipodystrophy syndrome: risks and impact on clinical decision making. Journal of Acquired Immune Deficiency Syndromes. 2005;39(4):395–400. [PubMed]
12. Simha V, Garg A. Inherited lipodystrophies and hypertriglyceridemia. Current Opinion in Lipidology. 2009;20(4):300–308. [PubMed]
13. Capeau J, Vigouroux C, Magré J, Lascols O, Caron M, Bastard JP. Lipodystrophic syndromes: congenital or acquired diseases of adipose tissue. Comptes Rendus – Biologies. 2006;329(8):639–652. [PubMed]
14. Urich E. Insulin resistance: the adipose tissue in the focus. Orvosi Hetilap. 2005;146(43):2199–2207. [PubMed]
15. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome—an allostatic perspective. Biochimica et Biophysica Acta. 2010;1801(3):338–349. [PubMed]
16. Arner E, Westermark PO, Spalding KL, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59(1):105–109. [PMC free article] [PubMed]
17. Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nature Reviews Endocrinology. 2010;6(4):195–213.
18. Perrini S, Cignarelli A, Ficarella R, Laviola L, Giorgino F. Human adipose tissue precursor cells: a new factor linking regulation of fat mass to obesity and type 2 diabetes? Archives of Physiology and Biochemistry. 2009;115(4):218–226. [PubMed]
19. Park KW, Halperin DS, Tontonoz P. Before they were fat: adipocyte progenitors. Cell Metabolism. 2008;8(6):454–457. [PubMed]
20. Hong KM, Burdick MD, Philips RJ, Heber D, Strieter RM. Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice. FASEB Journal. 2005;19(14):2029–2031. [PubMed]
21. Cinti S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. Journal of Endocrinological Investigation. 2002;25(10):823–835. [PubMed]
22. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anatomical Record, Part A. 2003;272(1):398–402.
23. Laudes M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. Journal of Molecular Endocrinology. 2011;46(2):R65–R72. [PubMed]
24. Hei SS. Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate. Molecular Endocrinology. 2009;23(11):1717–1725. [PMC free article] [PubMed]
25. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002;13(12):4279–4295. [PMC free article] [PubMed]
26. Mizuno H, Itoi Y, Kawahara S, Ogawa R, Akaishi S, Hyakusoku H. In vivo adipose tissue regeneration by adipose-derived stromal cells isolated from GFP transgenic mice. Cells Tissues Organs. 2008;187(3):177–185. [PubMed]
27. Elabd C, Chiellini C, Carmona M, et al. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells. 2009;27(11):2753–2760. [PubMed]
28. Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–586. [PMC free article] [PubMed]
29. Majka SM, Fox KE, Psilas JC, et al. De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(33):14781–14786. [PMC free article] [PubMed]
30. Schulz TJ, Huang TL, Tran TT, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(1):143–148. [PMC free article] [PubMed]
31. Langin D. Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity? Biochimica et Biophysica Acta. 2010;1801(3):372–376. [PubMed]
32. Timmons JA, Pedersen BK. The importance of brown adipose tissue. New England Journal of Medicine. 2009;361(4):415–416. [PubMed]
33. Jacene HA, Wahl RL. The importance of brown adipose tissue. New England Journal of Medicine. 2009;361(4):417–418. [PubMed]
34. Morganstein DL, Wu P, Mane MR, Fisk NM, White R, Parker MG. Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: a role for ERRα in human UCP1 expression. Cell Research. 2010;20(4):434–444. [PMC free article] [PubMed]
35. Shah S, Ulm J, Sifri ZC, Mohr AM, Livingston DH. Mobilization of bone marrow cells to the site of injury is necessary for wound healing. Journal of Trauma. 2009;67(2):315–321. [PubMed]
36. Glaros T, Larsen M, Li L. Macrophages and fibroblasts during inflammation, tissue damage and organ injury. Frontiers in Bioscience. 2009;14:3988–3993. [PubMed]
37. Jialal I, Fadini GP, Pollock K, Devaraj S. Circulating levels of endothelial progenitor cell mobilizing factors in the metabolic syndrome. American Journal of Cardiology. 2010;106(11):1606–1608. [PMC free article] [PubMed]
38. Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. Journal of Applied Physiology. 2007;102(3):847–852. [PubMed]
39. Fadini GP, De Kreutzenberg SV, Coracina A, et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. European Heart Journal. 2006;27(18):2247–2255. [PubMed]
40. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research and Therapy. 2007;9(1, article no. 204)
41. Shi Y, Hu G, Su J, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Research. 2010;20(5):510–518. [PubMed]
42. Qian SW, Li XI, Zhang YY, et al. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow. BMC Developmental Biology. 2010;10, article no. 47
43. De Bari C, Dell’Accio F, Vanlauwe J, et al. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis and Rheumatism. 2006;54(4):1209–1221. [PubMed]
44. Mansilla E, Drago H, Marin GH, Sturla F, Ibar R, Soratti C. Mesenchymal stem cells, could they be the link between tolerance and regeneration? Burns. 2007;33(2):137–138. [PubMed]
45. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11(4):377–391. [PubMed]
46. Gregory CA, Ylostalo J, Prockop DJ. Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two-stage hypothesis for regulation of MSC fate. Science’s STKE. 2005;2005(294):p. pe37.
47. Carlesso N, Cardoso AA. Stem cell regulatory niches and their role in normal and malignant hematopoiesis. Current Opinion in Hematology. 2010;17(4):281–286. [PubMed]
48. Zhong Z, Patel AN, Ichim TE, et al. Feasibility investigation of allogeneic endometrial regenerative cells. Journal of Translational Medicine. 2009;7, article no. 15
49. Jia GQ, Zhang MM, Yang P, Cheng JQ, Lu YR, Wu XT. Effects of the different culture and isolation methods on the growt, Proliferation and biology characteristics of rat bone marrow mesenchymal stem cells. Sichuan Da Xue Xue Bao Yi Xue Ban. 2009;40(4):719–723. [PubMed]
50. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science. 2006;119(11):2204–2213. [PubMed]
51. Chapel A, Bertho JM, Bensidhoum M, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. Journal of Gene Medicine. 2003;5(12):1028–1038. [PubMed]
52. Mansilla E, Marín GH, Drago H, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplantation Proceedings. 2006;38(3):967–969. [PubMed]
53. Hemeda H, Jakob M, Ludwig AK, Giebel B, Lang S, Brandau S. Interferon-γ and tumor necrosis factor-α differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells and Development. 2010;19(5):693–706. [PubMed]
54. Barbarroja N, López-Pedrera R, Mayas MD, et al. The obese healthy paradox: is inflammation the answer? Biochemical Journal. 2010;430(1):141–149. [PubMed]
55. Rizvi AA. Hypertension, obesity, and inflammation: the complex designs of a deadly trio. Metabolic Syndrome and Related Disorders. 2010;8(4):287–294. [PubMed]
56. Gálvez BG, San Martín N, Rodríguez C. TNF-alpha is required for the attraction of mesenchymal precursors to white adipose tissue in Ob/ob mice. PLoS One. 2009;4(2, article e4444)
57. Peterson MJ, Morey MC, Giuliani C, et al. Walking in old age and development of metabolic syndrome: the health, aging, and body composition study. Metabolic Syndrome and Related Disorders. 2010;8(4):317–322. [PMC free article] [PubMed]
58. Tereshina EV. Metabolic abnormalities as a basis for age-dependent diseases and aging? State of the art. Advances in Gerontology. 2009;22(1):129–138. [PubMed]
59. Halaschek-Wiener J, Brooks-Wilson A. Progeria of stem cells: stem cell exhaustion in Hutchinson-Gilford progeria syndrome. Journals of Gerontology. Series A. 2007;62(1):3–8.
60. Mazereeuw-Hautier J, Wilson LC, Mohammed S, et al. Hutchinson-Gilford progeria syndrome: clinical findings in three patients carrying the G608G mutation in LMNA and review of the literature. British Journal of Dermatology. 2007;156(6):1308–1314. [PubMed]
61. Coutinho HDM, Falcão-Silva VS, Gonçalves GF. Hutchinson-gilford progeria syndrome: clinical and genetical traits. Panminerva Medica. 2009;51(2):134–135. [PubMed]
62. Russo-Menna I, Arancibias C. The Hutchinson-Gilford Progeria Syndrome: a case report. Minerva Anestesiologica. 2010;76(2):151–154. [PubMed]
63. Coutinho HDM, Falcão-Silva VS, Gonçalves G, da Nóbrega R. Molecular ageing in progeroid syndromes: Hutchinson-Gilford progeria syndrome as a model. Immunity and Ageing. 2009;6, article no. 4
64. Merideth MA, Gordon LB, Clauss S, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. New England Journal of Medicine. 2008;358(6):592–604. [PMC free article] [PubMed]
65. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(27):10271–10276. [PMC free article] [PubMed]
66. Candelario J, Sudhakar S, Navarro S, Reddy S, Comai L. Perturbation of wild-type lamin A metabolism results in a progeroid phenotype. Aging Cell. 2008;7(3):355–367. [PMC free article] [PubMed]
67. Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nature Cell Biology. 2008;10(4):452–459.
68. Broers JLV, Ramaekers FCS, Bonne G, Ben Yaou R, Hutchison CJ. Nuclear lamins: laminopathies and their role in premature ageing. Physiological Reviews. 2006;86(3):967–1008. [PubMed]
69. Fuchs E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell. 2009;137(5):811–819. [PMC free article] [PubMed]
70. Bridger JM, Kill IR. Aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis. Experimental Gerontology. 2004;39(5):717–724. [PubMed]
71. Hou JW. Natural course of neonatal progeroid syndrome. Pediatrics and Neonatology. 2009;50(3):102–109. [PubMed]
72. Ding SL, Shen CY. Model of human aging: recent findings on Werner’s and Hutchinson-Gilford progeria syndromes. Clinical Interventions in Aging. 2008;3(3):431–444. [PMC free article] [PubMed]
73. Ershler WB, Ferrucci L, Longo DL. Hutchinson-Gilford progeria syndrome. New England Journal of Medicine. 2008;358(22):2409–2410. [PubMed]
74. Korf B. Focus on research: Hutchinson-Gilford progeria syndrome, aging, and the nuclear lamina. New England Journal of Medicine. 2008;358(6):552–554. [PubMed]
75. Friedman RSC, Krause DS. Regeneration and repair: new findings in stem cell research and aging. Annals of the New York Academy of Sciences. 2009;1172:88–94. [PubMed]
76. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. Journal of Clinical Investigation. 2005;115(5):1111–1119. [PMC free article] [PubMed]
77. Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007;27(11):2276–2283.
78. Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochimica et Biophysica Acta. 2009;1792(4):364–370. [PubMed]
79. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–263. [PMC free article] [PubMed]
80. Dunac A, Frelin C, Popolo-Blondeau M, Chatel M, Mahagne MH, Philip PJM. Neurological and functional recovery in human stroke are associated with peripheral blood CD34+ cell mobilization. Journal of Neurology. 2007;254(3):327–332. [PubMed]
81. Ballard VLT, Edelberg JM. Stem cells and the regeneration of the aging cardiovascular system. Circulation Research. 2007;100(8):1116–1127. [PubMed]
82. Mikirova NA, Jackson JA, Hunninghake R, et al. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects. Journal of Translational Medicine. 2010;8, article no. 34
83. Jensen GS, Hart AN, Zaske LAM, et al. Mobilization of human CD34+CD133+ and CD34+CD133− stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae-related to modulation of CXCR4 expression by an L-selectin ligand? Cardiovascular Revascularization Medicine. 2007;8(3):189–202. [PubMed]
84. Ichim TE, Zhong Z, Mikirova NA, et al. Circulating endothelial progenitor cells and erectile dysfunction: possibility of nutritional intervention? Panminerva medica. 2010;52(2, supplement 1):75–80. [PubMed]
85. Erbs S, Höllriegel R, Linke A, et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circulation: Heart Failure. 2010;3(4):486–494. [PubMed]
86. Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(8):1442–1447.
87. Fiorito C, Rienzo M, Crimi E, et al. Antioxidants increase number of progenitor endothelial cells through multiple gene expression pathways. Free Radical Research. 2008;42(8):754–762. [PubMed]
88. Xia L, Wang XX, Hu XS, et al. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. British Journal of Pharmacology. 2008;155(3):387–394. [PMC free article] [PubMed]
89. Menasché P, Alfieri O, Janssens S, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117(9):1189–1200. [PubMed]
90. Yousef M, Schannwell CM, Köstering M, Zeus T, Brehm M, Strauer BE. The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. Journal of the American College of Cardiology. 2009;53(24):2262–2269. [PubMed]
91. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circulation Research. 2007;100(9):1249–1260. [PubMed]
92. Beitnes JO, Hopp E, Lunde K, et al. Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart. 2009;95(24):1983–1989. [PubMed]
93. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113(10):1287–1294. [PubMed]
94. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metabolism. 2008;7(5):410–420. [PMC free article] [PubMed]
95. Klebanov S, Astle CM, DeSimone O, Ablamunits V, Harrison DE. Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. Journal of Endocrinology. 2005;186(1):203–211. [PubMed]
96. Coleman SR. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plastic Surgery. 1995;19(5):421–425. [PubMed]
97. Bauer-Kreisel P, Goepferich A, Blunk T. Cell-delivery therapeutics for adipose tissue regeneration. Advanced Drug Delivery Reviews. 2010;62(7-8):798–813. [PubMed]
98. Caspar-Bauguil S, Cousin B, Galinier A, et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Letters. 2005;579(17):3487–3492. [PubMed]
99. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. British Journal of Haematology. 2005;129(1):118–129. [PubMed]
100. Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24(11):2582–2591. [PubMed]
101. Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine. 2007;262(5):509–525. [PubMed]
102. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plastic Surgery. 2008;32(1):48–55. [PMC free article] [PubMed]
103. Lacy EL, Bartness TJ. Effects of white adipose tissue grafts on total body fat and cellularity are dependent on graft type and location. American Journal of Physiology. 2005;289(2):R380–R388. [PubMed]
104. Dellagiacoma G, Sbarbati A, Rossi M, et al. Brown adipose tissue: magnetic resonance imaging and ultrastructural studies after transplantation in syngeneic rats. Transplantation Proceedings. 1992;24(6):p. 2986.
105. Ferren L. Morphological differentiation of implanted brown and white fats. Transactions of the Kansas Academy of Science. 1966;69(1):350–353. [PubMed]
106. Garg A, Agarwal AK. Lipodystrophies: disorders of adipose tissue biology. Biochimica et Biophysica Acta. 2009;1791(6):507–513. [PMC free article] [PubMed]
107. Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. Journal of Clinical Investigation. 2000;105(3):271–278. [PMC free article] [PubMed]
108. Huffman DM, Barzilai N. Role of visceral adipose tissue in aging. Biochimica et Biophysica Acta. 2009;1790(10):1117–1123. [PMC free article] [PubMed]
109. Muzumdar R, Allison DB, Huffman DM, et al. Visceral adipose tissue modulates mammalian longevity. Aging Cell. 2008;7(3):438–440. [PMC free article] [PubMed]
110. Huffman DM, Barzilai N. Contribution of adipose tissue to health span and longevity. Interdisciplinary Topics in Gerontology. 2010;37:1–19. [PubMed]

Inflammatory Bowel Disease Treatable With Stem Cells?

Researchers at Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine may have discovered the key to treating inflammatory bowel disease (IBD).

Dr. Graca Almeida-Porada and her team of scientists found a specific stem cell population in cord blood that migrates to the intestine and proliferates there.

Fetal sheep were injected with the stem cells and their intestines were analyzed 11 weeks later.

“These cells are involved in the formation of blood vessels and may prove to be a tool for improving the vessel abnormalities found in IBD,” said Dr. Almeida-Porada.

Intestinal swelling, inflammation and ulcers typically cause abdominal pain and diarrhea in IBD patients. Reducing inflammation is a key to treatment but currently approved drugs are not very effective.

“This study shows that the cells can migrate to and survive in a healthy intestine and have the potential to support vascular health,” said Almeida-Porada. “Our next step will be to determine whether the cells can survive in the ‘war’ environment of an inflamed intestine.”

Medistem Advances Type 1 Diabetes Stem Cell Technology Licensed From Yale

SAN DIEGO, CA — (Marketwire) — 09/12/12 — Medistem Inc. (PINKSHEETS: MEDS) announced today completion of the first phase of a joint project with the Shumakov Research Center of Transplantology and Artificial Organs of the Russian Federation and its Russian and CIS licensee ERCell. The collaboration is based on using Endometrial Regenerative Cell (ERC) technology licensed from Yale University to treat type 1 diabetes.

Dr. Viktor Sevastianov, Head and Professor of the Institute of Biomedical Research and Technology, within the Shumakov Center, demonstrated safety and feasibility of ERC injection in experimental animal models of diabetes. Additionally, the studies demonstrated that the cell delivery technology developed by Dr. Sevastianov’s laboratory can be used to enhance growth of ERC. These experiments are part of the process for registration of “new pharmacological substances,” which is the first step towards drug approval in Russia.
“Type 1 diabetes is a significant problem in the Russian Federation. Our laboratory has been working developing various delivery formulations for cell therapy, such as SpheroGel, which is registered in Russia,” said Dr. Sevastianov. “Given that the ERC can be produced in large quantities, is a universal donor cell, and already is approved for clinical trials in both the USA and Russia, we are optimistic our collaboration will lead to a viable commercial product for the type 1 diabetes Russian population.”
Medistem discovered ERCs in 2007, and they appear to possess “universal donor” properties, allowing the cells derived from one donor can treat multiple unrelated recipients. According to Medistem’s current FDA cleared production scheme, one donor can generate 20,000 patient doses. Medistem licensed technology from Yale University for generating insulin producing cells from ERC. A publication describing the technology may be found at http://www.ncbi.nlm.nih.gov/pubmed/21878900.

“Our vision is to combine SpheroGel, which is a clinically-available cell delivery vehicle in Russia, together with Medistem’s ERC and technology from Yale University to generate a commercially-viable product for clinical trials in type 1 diabetes patients,” said Thomas Ichim, CEO of Medistem.

Medistem has outlicensed the Russian and CIS rights to ERC and related products to ERCell LLC, a St. Petersburg-based biotechnology company. Under the agreement, Medistem owns all data generated and will receive milestone and royalty payments.
“By working with leading investigators in Russia and the USA, we seek to be the leaders in a new era of medicine in Russia,” said Tereza Ustimova, CEO of ERCell.”

Cautionary Statement This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Contact: Thomas Ichim Chief Executive Officer Medistem Inc. 9255 Towne Centre Drive Suite 450 San Diego, CA 92122 858 349 3617 www.medisteminc.com twitter: @thomasichim
Source: Medistem Inc.

Blood Stem Cells Permanently Damaged by Alcohol

Bone marrow stem cells are extremely sensitive to the primary by-product of alcohol, which causes permanent damage to their DNA claims researchers from the Medical Research Council (MRC) Lab of Molecular Biology.

The research, which was conducted on mice, uncovers two mechanisms that normally control this type of damage; a protein group that recognizes and repairs DNA damage and an enzyme that eliminates acetaldehyde, alcohol’s toxic breakdown product.

Mice lacking both protective mechanisms developed bone marrow failure stemming from blood stem cell damage.
These results mark the first time that scientists have been able to explain why bone marrow fails in Fanconi anemia (FA) patients. FA is a rare genetic disorder.

The report concludes that FA turns off the bone marrow’s “repair kit” via FA gene mutation which causers DNA damage from acetaldehyde to continue unchecked. This damage is responsible for bone marrow failure and developmental defects in FA patients and makes them especially vulnerable to blood and other types of cancer.

These findings may have particular significance for the world’s Asian population, many of whom suffer from “Asian flush syndrome”. People with AFS lack the enzyme ALDH2 and therefore could be particularly susceptible to DNA damage. The authors warned that this subset of the Asian population could suffer permanent DNA damage with alcohol consumption and be more highly prone to blood cancer, bone marrow failure and premature aging than the Asian population at-large.

“Blood stem cells are responsible for providing a continuous supply of healthy blood cells throughout our lifespan. With age, these vital stem cells become less effective because of the build up of damaged DNA. Our study identifies a key source of this DNA damage and defines two protective mechanisms that stem cells use to counteract this threat. Last year we published a paper showing that without this two-tier protection, alcohol breakdown products are extremely toxic to the blood. We now identify exactly where this DNA damage is occurring, which is important because it means that alcohol doesn’t just kill off healthy circulating cells, it gradually destroys the blood cell factory. Once these blood stem cells are damaged they may give rise to leukaemias and when they are gone they cannot be replaced, resulting in bone marrow failure,” Dr KJ Patel, who is the primary investigator.

“The findings may be particularly significant for a vast number of people from Asian countries such as China, where up to a third of the population are deficient in the ALDH2 enzyme. Alcohol consumption in these individuals could overload their FA DNA repair kit causing irreversible damage to their blood stem cells. The long-term consequences of this could be bone marrow dysfunction and the emergence of blood cancers,” Patel added.

“This study provides much sought-after explanation of the biology underpinning the devastating childhood disease Fanconi anemia. In future this work may underpin new treatments for this genetic disease, which currently is associated with a very poor prognosis. It also helps to inform large numbers of the global population, who are deficient in the ALDH2 enzyme, that drinking alcohol may be inflicting invisible damage on their DNA,” commented Sir Hugh Pelham, director of the MRC Laboratory of Molecular Biology.