New NIH Stem Cell Guidelines are Slowing Research

According to Dr. Steve Duncan, professor of human and molecular genetics at the Medical College of Wisconsin, the failure of the new NIH Guidelines to "grandfather" in the already existing hESC lines has had a "tremendously detrimental effect on our research."

As Dr. Duncan explains, "The problem is they haven’t added the presidential lines as a group of lines that we can now use. So we can’t do any human embryonic stem cell (hESC) research with new federal funds at this point. We’re hoping within the next two months that it will be relaxed, but that’s a long time in research and it’s reallly upsetting, the way it’s been handled."

Once again, as previously reported a number of times on this website, at the heart of the debate are the "voluntary and informed consent" rules which are contained within the new NIH Guidelines. Many, if not all, of the hESC lines that already exist were created before such rules of consent were authored, and therefore do not meet "the core ethical principles and procedures" that are defined in the new NIH Guidelines. Even though NIH says that such hESCs are subject to review by an advisory committee and might therefore be "grandfathered" in, there is still widespread doubt among the ESC scientific community that many of those lines will be approved for the federal funding of research.

In fact, contrary to popular opinion, there is one major obstacle in the U.S. which is preventing stem cell therapies from being available in clinics at this very moment, and that obstacle has nothing to do with NIH nor with embryonic stem cells nor with any restrictions that the Bush administration supposedly imposed nor with any restrictions that the Obama administration supposedly lifted. Instead, that one, single, primary obstacle is the fact that the U.S. FDA (Food and Drug Administration) has decreed that autologus (in which the donor and recipient are the same person) adult stem cells are a "drug", and therefore must be regulated as such, and therefore cannot be used for therapeutic purposes in the U.S. without having first been subjected to the lengthy, lethargic, outdated, multi-year, multi-million dollar federal governmental approval process, in the same manner as which pharmaceutically manufactured drugs are regulated. Such a stance is without any scientific basis whatsoever, and a number of individuals and organizations are attempting to initiate a much-needed and long-overdue reform of the FDA on this issue. Until the FDA is completely overhauled, however, it seems as though U.S. academicians will continue to focus all of their time and attention on arguing over the federal funding of embryonic stem cell research while apparently remaining oblivious to the fact that doctors and patients are not willing to sit around and wait another decade for something to happen, but instead are traveling overseas where adult stem cell therapies are already available in clinics in just about every country in the world except the United States. (Please see the related news articles on this website, entitled, "Arizona Man Travels to Central America for Adult Stem Cell Therapy", dated July 16, 2009; "Bangor Family Heads to Central America for Adult Stem Cell Therapy", dated July 8, 2009; "Texas Woman Travels to Central America for Adult Stem Cell Treatment", dated June 25, 2009, and "Two U.S. Adult Stem Cell Companies Form Collaboration in Asia", dated May 11, 2009).

Despite all the exaggerated hype over embryonic stem cells, usually at the complete exclusion of adult stem cells, Dr. Duncan nevertheless predicts that future stem cell research will shift more toward adult rather than embryonic stem cells, and not just for the numerous sound scientific and medical reasons but also for ethical reasons as well. Despite his own interest in hESC research at the moment, he also pointed out that, "I think we have to take into account the ethical situation."

NIH received varied responses, some poignant, on stem-cell draft

President Obama issued Executive Order 13505 on March 9, 2009, to establish policy and procedures under which NIH (National Institutes of Health) will fund research in the area of embryonic stem cells. Previously, embryonic stem cell research was legal in the US, as long as it was not funded by the NIH. However, NIH funded research in embryonic stem cells could be conducted as long as it involved existing embryonic stem cell lines, and not creation of new ones. As a response to the Executive Order, the NIH generated draft Guidelines that would allow funding for research using human embryonic stem cells that were derived from embryos created by in vitro fertilization (IVF) for reproductive purposes and were no longer needed for that purpose.

There were approximately 49,000 comments sent into the NIH in response to a publicly available draft of the new guidelines to embryonic stem cell research (see for yourself at http://grants.nih.gov/stem_cells/web_listing.htm). According to the article by Nancy Frazier O’Brien of the Catholic News Service, although many of them were repetitive, some made clear the point that destruction of human embryos should not be permitted. For example, one comment was:

"As a mother of a child with juvenile diabetes, I certainly hope we find a cure for this terrible disease in her lifetime," wrote one woman. "However, I am not willing to sacrifice the life of ONE CHILD, let alone thousands or even more in the name of research.

Currently much research is being performed on embryonic stem cells in order to develop treatments and eventually cures for diseases that currently are incurable. At least this dream is what inspires many to support embryonic stem cell research. Unfortunately, much of the political debate, at least in our opinion, seems to be just that: politics.

The whole purpose of medical research is the development of new treatment that help people. This is not to say that there is something wrong with doing research for the sake of doing research. After all, many of the greatest advancements of humanity came about by accident when people were not looking for them. So there is a point to doing basic research for the sake of basic research. However, the media and the political debates around embryonic stem cells are giving the impression that if people do not support embryonic stem cells, they are not supporting cures for their children with diabetes, or their parents with Alzheimer’s or Michael J Fox’s Parkinson’s. In fact, nothing could be farther from the truth.

The field of embryonic stem cell research is based on the finding that if one takes a fertilized egg and extracts specific cells after the fertilized egg has developed to a certain point, these cells, can give rise to every cell in the body. Interestingly, these "master cells" can be grown in high quantities under special conditions so that they can be used for experiments. For example, these embryonic stem cells can be treated with certain chemicals and make muscle cells in the test tube. These cells can be treated with other chemicals and make brain cells in the test tube. These cells can make almost any cell known to mankind when manipulated in the test tube. This sounds very exciting. This is why many people are very excited about embryonic stem cell research.

Now the problem is a little more complex.

When these "master cells", these embryonic stem cells, are placed into a mouse that has been induced to have a heart attack, what happens to these cells? Unfortunately, what happens, is that the mouse developed more inflammation, or some mice develop a cancer called a teratoma. So the beautiful and exciting work in the test tube, has so far largely failed to produce therapeutic results in animals. We know that cancer has been cured in animals for decades now, yet some many humans still die of cancer. If we can not induce cures in animals with embryonic stem cells, then how likely are we to induce cures in humans in the near future?

Exactly. The point that embryonic stem cell advocates make, the ones that have some familiarity with medical science (which most don’t), is that just because embryonic stem cells are not useful today does not been that they will not be useful tomorrow. That research dollars need to be spent on embryonic stem cells so that one day they may be useful.

We can not argue with the point of supporting basic research. However, our position is that basic research should be seen as basic research and should not be transformed into a "religion".

There are several points that need to be made that are not made out of belief, or politics, or even religion, but are based on scientific facts:

Firstly, embryonic stem cells have made medical progress already. The creation of genetically engineered mice (knockouts and transgenics) was soley dependent on mouse embryonic stem cells. Practically everything we know scientifically about the function of molecules in living things has been derived from these animals. Accordingly, the blanket statement that embryonic stem cells have produced no benefits is incorrect.

Secondly, adult stem cells have been used already in patients with various degrees of success. For example, in patients with heart failure, analysis of over 1000 patients indicated overall improvement of heart function. Now where would money and funds be better spend? Taking something that seems to work and making it applicable to everyone, or chasing a distant dream?

Thirdly, embryonic stem cell research, from a scientific perspective, is rapidly becoming obsolete. The moral and ethical issues surrounding embryonic stem cells arise from the need to destroy the embryo to extract the embryonic stem cells. The new technology called inducible pluripotent stem cells (iPS) allows for the generation of brand new embryonic-like stem cells from skin, bone marrow, brain, and pretty much any other tissue. What many supporters of embryonic stem cells do not know is that iPS cells are more attractive to scientists because: a) they can be easily generated; b) they offer potential to make "brand new", "clean" cells, without having to rely on embryonic stem cells that are years old and have undefined characteristics; and c) iPS cells allow the possibility to make stem cells from the same patient.

On July 6th, 2009 Dr. Raynard S. Kington, acting NIH director, made final the guidelines and approved funding for research involving the creation of new ES cells. The question now becomes how much of the funding should support ES research and how much support with the other stem cell technologies be given, the technologies that actually seem to be inducing benefit in people today?

Bangor Family Heads to Central America for Adult Stem Cell Therapy

Kenneth Kelley, an eight-year old child from the Bangor area will be the first person from Maine to receive adult stem cell therapy for autism. Stem cell therapy for the treatment of autism has been performed in many North American children who have traveled to the ICM clinic in Central America, with several news reports of patient improvements, and one scientific publication from the group supporting the rationale for this therapy (Ichim et al. Stem Cell Therapy for Autism. 2007 Jun 27;5:30).

Autism is a disorder of the brain that occurs as a child is growing up, and is associated with repetitive behavior, lack of ability to interact socially, and impaired communication skills. To date there is no cure for autism, although a variety of experimental interventions are being performed with varying degrees of success.
Adult stem cell therapy for autism is based on the idea that a chronic inflammatory condition in the gut of autistic children may resolve or at least diminished from the healing effects of the mesenchymal stem cells. The other stem cell type that is used for treatment of autism comes from the cord blood. Cord blood stem cells have been demonstrated by numerous American and international scientific groups to secrete factors that promote healing of nerves and enhance oxygenation of the brain.

Marty Kelly, mother of Kenneth, like many parents of autistic children, initially could not believe the diagnosis of autism. Kenneth was 2 years old when his doctors made the diagnosis, which is believed to be made in as many as 1 in 144 children. Marty Kelly, determined to do something about it, arranged for Kenneth to start receiving hyperbaric oxygen treatments for her son, which caused an improvement in his condition. According to her:

"One of the first things we did was buy a hyperbaric oxygen chamber and within a couple of days, he actually sat down and traced the alphabet from A to Z by himself which was huge. First time he’d ever done that."

Hyperbaric oxygen increases growth factor production in the brain, as well as, by providing oxygen theoretically overcomes some of the problems reported in autistic children such as poor oxygenation of certain parts of the brain. In the case of Kenneth, while there were improvements, these were not cures and the underlying condition still caused significant suffering in the Kelley household:

"It’s really hard because he just we can’t go anywhere and we can’t have anyone over. He just screams all day."

Marty is confident adult stem cell therapy will cause benefits in Kenneth based on knowledge of previous children who have been treated with varying degrees of success.

To discuss and learn more about adult stem cell therapy for autism, an Autism Biomedical support group is being created. The first meeting is july 18th at 10 am. To learn more, call 942-2459.

Click the play button in the video below to watch a news report of another autistic child treated with stem cells.

High School Coach Heads to Central America for Adult Stem Cell Therapy

Diagnosed in 2005 with multiple sclerosis, Sam Herrell had few options available to him in the U.S., his home country. Now, however, he is traveling to Central America in order to receive an adult stem cell therapy that was pioneered by American doctors but which is not yet available within the United States.

A proud native of Texas, the Ennis Lions football coach has decided to travel to ICM – the Institute for Cellular Medicine – in Central America for treatment with his own adult stem cells. The ICM has an 80% success rate with its patients, but don’t expect the treatment to be available any time soon within the U.S., since the U.S. FDA (Food and Drug Administration) has made such a procedure legally impossible for doctors to conduct within the United States. Specifically, the FDA has decreed that autologous (in which the donor and recipient are the same person) adult stem cells must be classified and regulated as a "drug", and therefore cannot be used as a clinical therapy until first being subjected to the ordinary FDA laws that govern pharmaceutically manufactured drugs, which is a process that typically requires a decade or more of testing before approval can be obtained. Most patients, with multiple sclerosis as well as other diseases or injuries, cannot wait a decade or longer for treatment, so they are following the U.S. doctors who have set up their clinics outside of U.S. borders. If the FDA would only change their stance on this critically important issue, then the U.S. doctors who pioneered this adult stem cell treatment would be able to administer the therapy within the U.S., and then perhaps there wouldn’t be such an endless debate over embryonic stem cells, which still have years if not decades left before they could be considered for use in clinical therapies. Unlike embryonic stem cells, adult stem cells are already being used in clinics around the world to treat real people with real diseases – but not within the U.S., except for the very limited number of FDA-approved clinical trials that are being conducted.

As Sam Herrell explains, "The thing that’s kind of disappointing is that the neurologists here have nothing that really gives you much hope. All they can do is say keep on this medication and hope it slows down, hope it doesn’t overtake your whole nervous sytsem before they find a cure. Outside the U.S., some things are being done that people have had phenomenal results with, and that’s been encouraging. I really think there’s going to be a cure for it – that’s what I’m hoping for. It’s been encouraging to hear those stories and talk with people."

A number of scientific studies in the medical literature support such claims, not the least of which is an article that was published in the Journal of Translational Medicine in April of 2009, entitled, "Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis", by N.H. Riordan et al., in which scientists and doctors elucidate the various cellular and molecular mechanisms that are at work when this type of autologous adult stem cell therapy is implemented as a treatment for multiple sclerosis. Additionally, 3 case studies are described in the paper in which patients with multiple sclerosis showed significant improvement after receiving such a treatment. Of particular significance are the unique immunomodulatory properties of this therapy, which play an especially vital role in a disorder of autoimmune origin such as multiple sclerosis.

In specific reference to ICM, Mr. Herrell adds, "I’ve heard of two different procedures I really think I’ll try. It’s very expensive, but that’s a hurdle I can try to tackle for hope of a cure. I get excited when I talk to those people who have gone outside the country, because they’ve come back with a story of hope. I’m still hopeful for a cure. I’m serious about that. These people who have tried some of these things, they don’t feel better, they feel cured. That’s what I’m hoping for. Then I can still live in Texas."

However, the U.S. FDA still insists that the cells within a person’s own body are "drugs" and therefore cannot be administered, not even to that very same person, for therapeutic purposes until first being subjected to the exact same multi-year, multi-million dollar approval process by which the pharmaceutical industry is regulated. Unless the FDA ever changes its position on this issue, people such as Sam Herrell will be forced to travel outside of the U.S. in order to be treated with their own, autologous adult stem cells.

Fortunately, at least such therapy does exist somewhere in the world, even though not in the United States.

Boston’s biotech community leads wave of stem cell consolidation, deal making

Today at the ISSCR Meeting in Barcelona, the merger of two stem cell companies, IZumi Bio and Pierian Inc was announced, with the new company being named IPierian. According to the new company’s website iPierian is

"…a pioneering biopharmaceutical company that is taking the cutting-edge technologies of cellular reprogramming and directed differentiation to an entirely new level to harness the power of induced pluripotent stem cells to advance the understanding of human diseases and accelerate the discovery of more effective therapeutics for patients"

The two precursor companies, iZumi and Pierian, both had synergistic skills in the area of inducible pluripotent stem cells (iPS), a type of "artificial stem cell" that is created from skin or other tissues. The use of iPS cells for therapeutics development is more attractive to scientists than embryonic stem cells for several reasons. Firstly, iPS cells can be generated to be patient-specific, thus overcoming problems with need for taking of immune suppressants. Currently embryonic stem cells can not be used in patients for several reasons, and the few times that their use is contemplated, the patient is sentenced to taking life-long immune suppression so that they do not undergo rejection. Secondly, iPS cells can be generated under highly defined conditions. Embryonic stem cells that are currently used have been developed years ago and face various problems such as the fact that many of them have previously been grown on mouse cells or using animal products. In contrast, iPS cells can be generated with relatively little effort.

iZumi was supported by the venture capital groups Kleiner Perkins Caufield & Byers and LExington, Mass.-based Highland Capital Partners with a $20 million investment, whereas Pierian was founded by MPM Capital managing directors Ashley Dombkowski and Robert Millman as well as Harvard University scientists. The new company, which will be led by John Walker as CEO and Corey Goodman, as Chairman, raised an additional $10 million from Boston-based MPM Capital and $1.5 million from FinTech Capital Partners.

Initial goals of the company will be use of the iPS cells to address disease affecting the central nervous system that have no effective treatment such as spinal muscular atrophy, Parkinson’s Disease, and ALS. In the long-run the company plans to investigate conditions such as heart failure, liver failure, and diabetes. As part of the new company’s strategy, it will seek synergistic collaborations with established market players.

Despite the aggressive goals the company has set for itself, there are several drawbacks that one must consider. Firstly, pluripotent stem cells, regardless of whether they are iPS or embryonic stem cells, all cause cancer when administered into animals. iPS may be especially dangerous since oncogenes (genes that cause cancer) are needed for the creation of these cells. In order for iPS to be used safely, it will be necessary to make sure that the cells being made for injection are completely the cells that one wants, and no contamination with the original iPS cells. In other words, if one is treating Parkinson’s Disease, one can not simply inject iPS cells into the area of the brain that is damaged, since this conceptually will form a tumor. In contrast, one would have to "teach" the iPS cells to become the specific cell that is damaged in Parkinson’s Disease, called the "dopaminergic neuron", one will have to concentrate these cells outside of the body, and then inject them directly where they are needed. Once the cells are injected, they will have to form connections with the existing cells and subsequently integrate and take over their function. This is in contrast to the present-day clinically available adult stem cell therapies, where in many cases adult stem cells are injected either intraviously or intrathecally, and the natural signals of the body instruct them to differentiate into the needed tissue. Although differentiation efficacy of adult stem cells may be lower on a per cell basis, of the thousands of people that have been treated with adult stem cells no reports of tumor formation exist.

iPierian’s scientific leadership comes from the respected embryonic stem cell experts Dr. George Daley, Douglas Melton and Lee Rubin who are faculty at Harvard. The scientific advisory board (SAB) of the company will be chaired by Dr. George Daley, and will include Amy Wagers, Kevin Eggan, Benoit Bruneau, and Matthias Hebrok.

Adult Stem Cells Treat Diabetes

Prochymal, the adult stem cell product derived from bone marrow and developed by Osiris Therapeutics, is currently in clinical trials for the treatment of type I diabetes. The double-blind, placebo-controlled, multi-site Phase II clinical trials have a target enrollment of 60 patients, each one of whom will receive 3 infusions over a period of 2 months.

Prochymal has been shown to protect the pancreas from the type of autoimmune attack that characterizes type I diabetes, thereby allowing the natural production of insulin. Patients in the trial have been able to reduce the amount of externally administered and prescribed insulin as their pancreas begin producing its own insulin.

According to Dr. Aaron Vinik of the U.S., "This is a very exciting discovery. When people get told they have diabetes, it comes as a tremendous shock. They have to live with having to take insulin injections for the rest of their lives. In the future, we will have a cure that will stop the disease in its tracks."

Prochymal is a proprietary adult stem cell product, the active ingredient in which is mesenchymal stem cells (MSCs) that are derived from healthy adult volunteer donors and formulated for intravenous infusion. Embryonic, fetal, and animal tissue are not involved. Prochymal has already been tested in over 1,000 patients in previous clinical trials with no adverse side effects.

In addition to these Phase II clinical trials for type I diabetes, Prochymal is also currently in Phase III clinical trials for graft-versus-host disease (GvHD), Crohn’s disease, and it is being developed for the repair of cardiac tissue following a heart attack as well as for the repair of lung tissue in patients with chronic obstructive pulmonary disease (COPD). Prochymal is the only stem cell therapeutic product currently designated both by the FDA and by the European Medicines Agency as both an Orphan Drug and as a Fast Track product. Osiris is also developing another adult stem cell product, Chondrogen, which is currently in clinical trials for the treatment of osteoarthritis of the knee.

A leader in adult stem cell therapies, Osiris Therapeutics is focused on the development of products for the treatment of inflammatory, orthopedic and cardiovascular diseases. In November of last year, Osiris formed a strategic alliance with the biotech company Genzyme that was valued at over $1.3 billion. In 2007, the two companies were awarded a $224.7 million contract from the U.S. Department of Defense for the development of Prochymal in the treatment of radiation sickness. (Please see the related news article on this website, entitled, "Genzyme and Osiris Form Adult Stem Cell Mega-Partnership", dated November 5, 2008).

Heart Stem Cells Heal Heart

When Ken Milles suffered a heart attack at the age of 39, he was not given a very encouraging prognosis from his doctor. As Ken describes, "When he told me that there was permanent damage and that the duration of my life was reduced, that freaked me out."

A construction worker and father of two teenaged sons, Ken is now the first patient to volunteer in a clinical trial at the Cedars-Sinai Heart Institute in Los Angeles. One of 24 patients in the study, Ken is the first person to be treated with his own heart-derived adult stem cells.

Adult stem cells are believed to reside in all tissue types throughout the body, with each type of adult stem cell being highly specialized in producing the corresponding specific type of tissue. Some organs, such as the heart, are known to contain very small amounts of their own stem cells, but nevertheless a specialized cardiac stem cell is known to exist in the adult human heart, throughout life and into old age. The low number of naturally occurring, endogenous cardiac stem cells, however, is not usually enough to repair serious damage to heart tissue, such as that which results from myocardial infarction. But when these cardiac stem cells are isolated, cultured and expanded in the laboratory, they can be readministered to the patient in quantities that are large enough to repair even severe damage. This is exactly what Ken’s doctors are doing.

As Dr. Eduardo Marban, the leader of the study, describes, "We seek to actually reverse the injury that has been caused by the heart attack, by regrowing new heart muscle to at least partially replace the scar that’s formed. These cells that we’re putting in come from the heart itself, and are predestined to generate heart muscle and blood vessels."

Derived from a tiny sample of healthy heart tissue, the cardiac stem cells are expanded in the laboratory to 25 million stem cells, which then develop into the spherical, multicellular structures known as cardiospheres which have been found in previous clinical and preclinical trials to regenerate damaged cardiac tissue. In fact, Dr. Marban was involved in similar studies at the Johns Hopkins University School of Medicine in 2005, at which time he reported that, "The findings could potentially offer patients use of their own stem cells to repair heart tissue soon after a heart attack, or to regenerate weakened muscle resulting from heart failure, perhaps averting the need for heart transplants. By using a patient’s own adult stem cells rather than a donor’s, there would be no risk of triggering an immune response that could cause rejection."

The doctors inject the stem cells through an artery directly into the damaged tissue of the patient’s heart. Within 6 months, signs of tissue repair should become evident.

As Ken Milles has said, "If this works, it’s gonna help so many people. It’s gonna change everything."

The clinical trials will continue for the next 3 to 4 years.

Texas Woman Travels to Central America for Adult Stem Cell Treatment

In order to treat her multiple sclerosis, Ann Lacy is traveling to a clinic in Central America for adult stem cell therapy. Currently she is in the process of raising approximately $35,000 for her trip, which will cover not only the cost of the therapy itself but also related travel expenses. The therapy is not eligible for insurance coverage, even though this particular clinic, the Institute for Cellular Medicine (ICM), boasts an 80% success rate in treating its patients.

The reporter for this particular news report as it appeared in the Tri County Leader states that, "The treatment has not been approved by the U.S. Food and Drug Administration, and studies on the effectiveness of this therapy are virtually nonexistent."

In fact, while the first half of that sentence is true, the second half is not. Numerous studies have already been reported in the medical literature which do, indeed, document both the safety and the efficacy of this therapy, such as, for example, the article entitled, "Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis", by N.H. Riordan et al., which was published in the Journal of Translational Medicine on April 24, 2009 and which meticulously documents 3 clinical case reports of multiple sclerosis patients who were treated with this type of autologous adult stem cell therapy and who subsequently showed dramatic improvement. Additionally, numerous other reports in the conventional, peer-reviewed medical literature also exist on the topic of adult stem cells, especially mesenchymal stem cells, as a treatment for multiple sclerosis, which any simple search of the medical literature would immediately reveal. To say that "studies on the effectiveness of this therapy are virtually nonexistent" is merely to advertise one’s ignorance of the topic, since such a statement is egregiously false.

The first half of the sentence, unfortunately, is very true: namely, such therapies have not been approved by the U.S. Food and Drug Administration. The FDA approval process is notoriously a very lengthy and expensive one, typically lasting a decade or longer and costing millions of dollars, even under the best of circumstances. In this particular instance, however, the prospect of ever getting autologous (in which the donor and recipient are the same person) adult stem cell therapy approved by the FDA is further complicated by the fact that the FDA has specifically outlawed such a procedure in the United States. In other words, the FDA has decreed that each person’s own endogenous, naturally occurring adult stem cells are "drugs" and therefore must be regulated as such, and therefore cannot be clinically administered as therapies in the U.S. – not even to the same person from whom the cells were obtained – until having first been subjected to the multi-year, multi-million dollar federal governmental approval process. It is this stance by the FDA on autologous adult stem cells – not any restrictions on the federal funding of embryonic stem cell research – which is the primary obstacle to stem cell therapies in the United States. Human embryonic stem cell (hESC) research has continued in previous years with private funding, yet hESCs still have at least another decade to go before they can be considered safe enough for clinical use, according to expert consensus among the hESC scientific community. Meanwhile, adult stem cell therapies are already in use throughout the world, in almost every country except the U.S., because of this ruling by the U.S. FDA. Only in the U.S. are a person’s own tissues and cells considered to be "drugs".

A number of grass-roots organizations have been formed in response to the FDA’s stance, which include the physician-based American Stem Cell Therapy Association (ASCTA) and the patient-based "Safe Stem Cells Now!". More information on these organizations is available at their websites, www.stemcelldocs.org and www.safestemcells.org, respectively.

As Dr. Christopher Centeno, founding CEO of the adult stem cell company Regenerative Sciences, and one of the founders of the ASCTA, has stated, "While the Obama administration seems to have opened the embryonic stem cell door, their FDA seems to want to slam the adult stem cell door shut."

(Please see the related news articles on this website, entitled, "Arizona Man Travels to Central America for Adult Stem Cell Therapy", dated July 16, 2009; "Bangor Family Heads to Central America for Adult Stem Cell Therapy", dated July 8, 2009; and "Two U.S. Adult Stem Cell Companies Form Collaboration in Asia", dated May 11, 2009).

Aastrom Resumes Clinical Trial Following FDA Clearance

The adult stem cell company Aastrom Biosciences has resumed patient enrollment in its Phase II clinical trial, entitled IMPACT-DCM, in which autologous adult stem cells are being used to treat dilated cardiomyopathy, an end-stage form of chronic, congestive heart failure. The study had been suspended on May 22 when a patient in the trial died. The U.S. Food and Drug Administration has now concluded that the death of the patient was unrelated to the clinical trial.

On May 22 it was announced that the clinical trial was suspended when a patient who was enrolled in the trial unexpectedly died after having been treated with autologous (in which the donor and recipient are the same person) adult stem cells and released from the hospital. The FDA then imposed a halt on the clinical trial, at which time Aastrom temporarily suspended further patient enrollment and treatment until the cause of death could be determined. Having completed its formal investigation, the FDA has now concluded that the cause of the patient’s death was unrelated to the clinical trial itself, but instead was merely caused by the advanced stage of the patient’s own dilated cardiomyopathy. Since the clinical trial was specifically designed to treat dilated cardiomyopathy, this disease was required as a preexisting condition for enrollment in the clinical trial, although some patients who were enrolled had more advanced and severe forms of this condition than others.

Fourteen people have been enrolled in the study thus far, which has a target enrollment of 40 patients. The dilated cardiomyopathy study is not Aastrom’s only clinical trial currently underway, however, as Aastrom is also conducting a Phase IIb clinical trial for the treatment of critical limb ischemia, an advanced form of peripheral artery disease, which is also being treated with autologous adult stem cells. According to the Aastrom’s website, "The Company’s proprietary Tissue Repair Cell (TRC) technology involves the use of a patient’s own cells to manufacture products to treat a range of chronic diseases and serious injuries. Aastrom’s TRC-based products contain increased numbers of stem and early progenitor cells, produced from a small amount of bone marrow collected from the patient." Aastrom describes itself as a "Regenerative medicine company developing personalized cell-based therapies to slow or reverse the course of chronic diseases." As stated on their website, "Aastrom’s TRC products have been used in over 325 patients, and are currently in clinical trials for cardiac, vascular and bone tissue regeneration applications, with plans to expand into the neural therapeutic area."

Headquartered in Ann Arbor, Michigan, Aastrom is focused exclusively on therapies that are developed from autologous adult stem cells, not embryonic stem cells.

Aastrom’s stock price climbed 21.8% following today’s news announcement by the FDA.

Adult Stem Cell Companies Seen as Profitable Investment

While religious groups debate the various ethical issues of embryonic versus adult stem cells, and researchers debate the various scientific issues, financial analysts are not debating at all. From a purely monetary perspective, it is adult stem cells, not embryonic stem cells, which constitute a sound investment.

As the authors of today’s article point out, "Amid controversies over embryonic stem cell research, drugs using adult cells are already bearing fruit." As the authors continue to explain, "When it comes to stem cells, the public – and the media – tend to focus on embryos. But researchers and analysts say marketable therapies already are emerging from less controversial work with adult stem cells."

Such a fact is hardly a secret, as scientists and physicians have been trying to tell the world for years that adult stem cell therapies already exist, while embryonic stem cell therapies do not, and probably will not for at least another decade. Such information is often "translated" through the filters of the media, however, many members of whom seem to be heavily biased toward the word "embryonic". Apparently it takes a financial perspective to convey the point that adult stem cells are scientifically and medically viable as human therapies, whereas embryonic stem cells are not. As the authors of today’s investment article explain, "Adult cells make up the lion’s share of the stem cell space, mainly because they are easier to come by than embryonic cells, and less expensive to run in clinical trials. They are also derived from mature tissue, like bone marrow or umbilical cord blood, so they avoid the ethical debate that surrounds embryonic stem cells."

The authors go on to point out that adult stem cells can "combat a variety of maladies from diabetes to heart disease", and "In fact, adult stem cells are currently the only type of stem cells used in transplants to treat diseases, such as cancers like leukemia. Furthermore, researchers are far closer to commercializing drugs based on adult stem cells than any product based on embryonic stem cells." Such medical and scientific advances did not suddenly happen overnight, but in fact have been going on for years. Where have you been, members of the media???

Ethics and politics aside, the scientific differences between embryonic and adult stem cells are numerous and significant, which is precisely why financial analysts are cautioning investors to heed the differences when it comes to market and monetary considerations. One financial guru in particular, Robin Young, a medical industry analyst with RRY Publications, has estimated that gross sales of adult stem cell therapies will surpass $100 million in the U.S. alone, just in 2009. In less than a decade, by 2018, Mr. Young has calculated that revenue from adult stem cell therapies could exceed $8.2 billion. Embryonic stem cells, by contrast, are not expected to advance beyond the laboratory stage for at least another decade, at the earliest, due to the numerous inherent problems that plague embryonic stem cells, not the least of which is their strong tendency to form teratomas – a particularly hideous type of tumor that contains teeth, hair, bones and bodily organs in a grossly disorganized fashion, like a disassembled and randomly rearranged human embryo. Even Dr. James Thomson, the world authority on embryonic stem cells, repeatedly emphasizes the point that embryonic stem cells are notoriously problematic in the laboratory and therefore will require at least another decade of research before being safe enough to be considered clinically viable as therapies. As "the father of embryonic stem cell science", and the first person who ever isolated an embryonic stem cell in the laboratory, Dr. Thomson certainly knows what he’s talking about, although most members of the media seem uninterested in such a dismal prospect for embryonic stem cells, so the disadvantages of these highly volatile and dangerous stem cells are rarely reported. But for anyone who may be interested either in being treated as a patient with stem cells, or in investing money in stem cells, the scientific realities become immediately relevant and important. While such realities are certainly discouraging for embryonic stem cells, they are highly encouraging for adult stem cells. As stated in today’s article, "Indeed, several pharmaceutical companies are now taking notice of research advancements in adult stem cells – and their proximity to reaching the market."

According to Debra Grega, executive director of the Center for Stem Cell and Regenerative Medicine at Case Western Reserve University, "Adult-derived cells are the ones that have been studied for the past 10 to 15 years and are ready for prime time. Large pharmaceutical companies are now wanting to get into the adult stem cell therapeutic area. That indicates to me that there is enough safety and enough efficacy that they are willing to put money in."

By sharp contrast, as the authors of today’s article point out, "The California-based outfit Geron dominates the embryonic market, and is perhaps 10 years away from commercializing a spinal cord treatment based on its research."

Another example of the momentum behind adult stem cell therapies is found in the pharmaceutical giant Pfizer which announced in November of last year that it would invest $100 million in regenerative medicine research over a 3 to 5 year period, with a strong emphasis on adult stem cells. Additionally, as the authors of today’s article explain, "The frontrunner in the adult stem cell space is Osiris Therapeutics. Last year, the biotech Genzyme paid Osiris $130 million up front, with another $1.2 billion to be paid in potential milestones, to develop two new adult stem cell treatments. Osiris’s star drug Prochymal is used to fight graft-versus-host disease, a painful illness that can afflict transplant recipients. Osiris says the FDA could approve the drug within a year. If successful, Osiris would be the first company to win approval for a stem cell drug."

Among other adult stem cell companies mentioned in today’s article are Stem Cells Inc., Cytori, and Aastrom Biosciences, all of which are described as "moving forward in the adult stem cell space."

As the authors conclude, "And so while there’s just one star in the embryonic stem cell universe, a whole constellation of adult stem cell drugs could be just around the corner."

Rather than having to wait another entire decade, or longer, for what may or may not even be a profitable return on one’s investment in the embryonic stem cell field, a wiser investment strategy would target any of the numerous companies that already have adult stem cell therapies in FDA-approved clinical trials, and which are moving increasingly closer to legal commercialization in a virtually unlimited market which is entirely untapped.