Adult Stem Cells Heal Arthritic Dog

Olli, a 12-year-old Gordon Setter in Ontario, was suffering from arthritis in his left knee and right hip. Within eleven days of receiving injections of his own adult stem cells, however, Olli is now showing significant improvement.

His vet, Dr. Melissa Boyle, is one of 26 veterinarians in Canada who have been qualified by the U.S. company Vet-Stem to administer the therapy, in which adult stem cells are derived from each animal’s own adipose (fat) tissue.

According to Dr. Deborah Boyd – Olli’s owner, a vet herself and the owner of the Grey Bruce Pet Hospital where Olli was treated – conventional veterinary therapies were ineffective in treating Olli and in fact his condition only worsened in response to such therapies. Now, after having tried adult stem cell therapy on Olli, Dr. Boyd is so pleased with the results that she asked her own physician why the same type of autologous adult stem cell therapy is not available for people. In response, as Dr. Boyd explains, "She just looked at me and said, ‘You veterinarians, you’re 10 years ahead of us.’"

Although the cost of the veterinary stem cell treatment runs between $1,500 and $2,500, conventional veterinary knee surgery for a dog of Olli’s size would have cost between $1,500 and $3,000 or more and also would have required expensive and dangerous medications for an indefinite period of time. Furthermore, the success rate of conventional surgeries and medications is much lower than that of adult stem cell therapy. Additionally, should the animal need future stem cell treatments, Vet-Stem’s fees also include banking services for 4 more doses of the animal’s stem cells at Vet-Stem’s laboratories in San Diego for the next year, after which time customers have the option of continuing to bank the cells at an annual fee of $120.

Dr. Thomas Koch, a researcher at the University of Guelph, recently received a 3-year post-doctoral fellowship worth more than $1 million for the research and development of adult stem cell therapies in the treatment of cartilage injuries in horses. (Please see the related news article on this website, entitled, "Canadian University Announces Major Adult Stem Cell Research Award on Horses", dated July 18, 2009). According to Dr. Koch, who was asked to comment on Vet-Stem’s therapy for dogs, "There doesn’t seem to be any adverse effects."

Indeed, as previously reported a number of times on this website, the company Vet-Stem continues to see consistently high success rates in both canine and equine clinical applications, with an 80% efficacy rate and a 100% safety rate in the animals that are treated with Vet-Stem’s autologous adult stem cell procedure. In other words, 80% of the animals treated are found to experience improvement in their condition with a reduction and often a full elimination of the need for medication, while adverse side effects have not been reported in any of the treated animals. Now, such applications are being repeated by other veterinarians and clinics around the world.

Companies such as Vet-Stem in the U.S. and VetCell in the U.K. have accumulated numerous documented cases of the benefits of autologous adult stem cell therapy in animals. To name just a few of the advantages, adult stem cell therapy yields faster healing and shorter recovery times than surgical treatments do, and adult stem cell therapy does not pose a risk of any side effects like medications do. Additionally, since the adult stem cells are autologous, there is no risk of immune injection. The U.K. company VetCell derives the autologous adult stem cells from the animal’s bone marrow, and to date has treated approximately 1,700 horses with an 80% success rate. By comparison, the U.S. company Vet-Stem derives the autologous adult stem cells from the animal’s adipose (fat) tissue, and to date has treated over 2,000 dogs and over 3,000 horses, also with an 80% success rate. With both companies, the procedure is quick, simple, and minimally invasive. Although the treatment is more expensive than conventional veterinary procedures, the adult stem cell treatment actually works, and noticeable improvement is seen almost immediately in all cases, not just in the 80% of cases that exhibit a complete recovery. By sharp contrast, however, conventional surgical and pharmacological therapies, which might initially be less expensive than stem cell therapy, only have a 30% success rate and therefore in the long-term are actually more expensive when repeated treatment is needed, or when improvements are not seen at all. Additionally, reinjury is significantly lower in animals who receive autologous adult stem cell therapy, due to the mechanism of action by which these stem cells activate the healing process. As Dr. David Mountford, a veterinary surgeon and chief operating officer at VetCell, explains, "After 3 years, the reinjury rate was much lower in stem-cell-treated animals: about 23% compared with the published average of 56%" for animals treated with conventional therapies.

Not only do the stem cells automatically target the injured tissue, but they also stimulate other endogenous stem cells which in turn are mobilized into action and participate in the healing and repair process. Although improvements are usually dramatic and immediate, even after the first injection, additional injections may be necessary, depending upon the age and condition of the animal. Very few animals ever need more than a total or 2 or 3 treatments, however, before they are fully restored to their natural, pain-free state of mobility – which contrasts sharply with conventional therapies such as most prescription medications which may need to be taken indefinitely, without ever producing any tangible signs of improvement and while even possibly causing further damage to the animal through dangerous side effects and other associated risks.

Ordinarily, injuries of the bones, joints, tendons and ligaments result in scarring of the tissue, which not only prevents full healing but also often leads to further injuries at a later time. Conventional medical therapies do nothing to address the problem of scar tissue directly, and surgical procedures actually make the problem worse by increasing the severity of tissue scarring which in turn merely exacerbates later complications that will inevitably result from the scar tissue, since such tissue can never be fully rehabilitated. Adult stem cell therapy, however, allows for the full and complete healing of tissue without scarring, which not only reduces the risk of re-injury of the same tissue at a later date but also restores full physical performance and function, usually very quickly and dramatically. Such is the case in humans as well as in animals. According to Dr. Robert Harman, veterinarian and founding CEO of Vet-Stem, "Our success in animals is directly translatable to humans, and we wish to share our evidence that stem cells are safe and effective." Additionally, adipose-derived stem cells have been shown in a number of studies to exhibit highly beneficial immunomodulatory properties – which reduce inflammation, among other benefits – in addition to stimulating the regeneration of cartilage and other tissue. (E.g., "Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis", by N.H. Riordan et al., published in the Journal of Translational Medicine in April of 2009, of which Dr. Harman is a coauthor). As Dr. Harman further adds, "In the last couple of years, evidence has come out that the cells we use reduce inflammation and pain, and help lubricate the joint. About 200,000 hip replacements are done every year in humans. That’s a very good target for someone to look at cell therapy."

Vet-Stem uses exclusively adult stem cells, derived from each animal’s own tissue. Since the cells are autologous (in which the donor and recipient are the same animal), there is no risk of immune rejection. More specifically, the stem cells that are harvested in Vet-Stem’s procedure are mesenchymal stem cells, which are highly potent adult stem cells that are also found in bone marrow and umbilical cord blood. Numerous scientific and clinical studies have been published in the peer-reviewed medical literature detailing the regenerative properties of mesenchymal stem cells.

No embryonic stem cells are ever used in Vet-Stem’s therapies, since embryonic stem cells are highly problematic in the laboratory, whether they are of human or non-human origin. Among other problems, the risk of teratoma (tumor) formation disqualifies embryonic stem cells for use as a clinical therapy, even in animals. Adult stem cells, however, do not pose such risks and are therefore rapidly accumulating a consistent history of successful clinical treatments in veterinary, as well as in human, medicine.

As numerous reports about more and more pioneering canine patients such as Olli continue to make their way into the veterinary literature, perhaps humans could also learn to benefit from such reports. After all, with enough patience, perseverance, and repetitive training, perhaps it might actually be possible for a few dogs to teach a few old humans some new stem cell tricks.

Novartis Acquires Opexa’s Adult Stem Cell Technology

The biotech companies Novartis and Opexa Therapeutics have signed an agreement in which Novartis will pay $4 million for Opexa’s novel adult stem cell technology.

The deal includes $3 million paid up-front, with an additional $1 million in fees that will be distributed over 6 months. Additional future milestone payments are estimated to exceed $50 million, not including royalties.

Novartis will be responsible for the funding of all R&D as well as commercial activities of Opexa’s technology, which enables the production of monocyte-derived stem cells (MDSCs) from blood. Currently the technology is in preclinical development where it was been shown to generate MDSCs from peripheral blood mononuclear cells.

As described on their website, "Opexa is focused on the development of patient-specific cellular therapies for the treatment of autoimmune diseases including multiple sclerosis and diabetes. The company’s lead product is Tovaxin, a T-cell MS vaccine that is specifically tailored to each patient’s disease profile. In October 2008 the company reported positive top-line results from a Phase IIb study in early, relapsing MS patients."

Formed in 1996 through the merger of the two companies Ciba-Geigy and Sandoz, Novartis is one of the world’s largest multinational corporations and a leader in healthcare, offering products and services in pharmaceuticals, vaccines and diagnostics. In 2008, Novartis invested $7.2 billion in its R&D, and that same year the company was ranked number 2 in Fortune magazine’s "World’s Most Admired Companies" survey. Novartis currently employs approximately 100,000 people in 140 countries worldwide.

Athersys Seeks Commercial Partners

The biopharmaceutical company Athersys is looking for commercial partners in the R&D of its various therapies, which include conventional drug therapies as well as some novel stem cell therapies.

According to Athersys chairman and CEO, Dr. Gil Van Bokkelen, who spoke to analysts during a company conference call, Athersys currently has the cash equivalents of $25.3 million, which is enough to keep the company operating through 2011. Nevertheless, the company would like to add to its capital base by partnering with other companies in the completion of the testing and development of therapeutic product lines.

The main product in the company’s stem cell line, known as MultiStem, is an off-the-shelf therapy that Athersys is currently testing for the treatment of heart attack, stroke, and graft-versus-host disease. As Dr. Van Bokkelan explained during the conference call, "We believe these and other capabilities will allow them to be relevant in a number of therapeutic areas, and we and our collaborators are excited about the potential utility of MultiStem for treating major conditions." Unlike many other types of stem cell therapies, which are designed "to achieve wholesale replacement of damaged tissue", Dr. Van Bokkelan described MultiStem as exhibiting "a more drug-like profile in which cells augment healing and exert a benefit in multiple ways, and then are cleared from the body over time." He added, however, that the wide range of applications for MultiStem "represent a development challenge, especially for an emerging biopharmaceutical company," which is why Athersys has decided to seek commercial partnerships. As Dr. Van Bokkelan further adds, "Accordingly, we believe that the optimal way to advance our MultiStem program is to find a significant commercial partner."

Under Dr. Van Bokkelan’s leadership, Athersys has been exploring partnership opportunities for months and is "greatly encouraged by the ongoing level of interest among potential partners." As he further describes, "We are confident that we will be able to secure strategic partnerships that will enable us to advance our MultiStem programs in a meaningful and substantial way."

Located in Cleveland, Ohio, Athersys is also currently developing two separate drug candidates for the treatment of obesisty and problems in cognitive attention, both of which deal with the chemical regulation and control of neuroreceptors. Even in this field, Dr. Van Bokkelan finds that, "Once again, we are greatly encouraged by the level of interest among potential partners in both areas, and believe we are in a strong position to construct relationships with leading companies that share our vision of developing best-in-class therapeutics."

As described on their website, "Athersys is a clinical stage biopharmaceutical company with a growing pipeline of highly differentiated, potential best-in-class therapeutics to treat significant and life-threatening diseases. … Our current product development portfolio consists of MultiStem, a patented and proprietary stem cell product that we are developing as a treatment for multiple disease indications, and that is currently being evaluated in two Phase I clinical trials. In addition, we are developing novel pharmaceuticals to treat indications such as obesity, as well as certain conditions that affect cognition, attention, and wakefulness. Our strategic approach to drug development builds on internally and externally generated knowledge to identify and develop proprietary and highly differentiated products, as well as enable the company to limit development risks and costs."

As further described on the website of Athersys, "MultiStem is a biologic product that is manufactured from human stem cells obtained from adult bone marrow or other nonembryonic tissue sources. The product consists of a special class of human stem cells that have the ability to express a range of therapeutically relevant proteins and other factors, as well as form multiple cell types. Factors expressed by MultiStem have the potential to deliver a therapeutic benefit in several ways, such as the reduction of inflammation, protection of damaged or injured tissue, and the formation of new blood vessels in regions of ischemic injury. These cells exhibit a drug-like profile in that they act primarily through the production of factors that regulate the immune system, protect damaged or injured cells, promote tissue repair and healing and most or all of the cells are cleared from the body over time."

One of the co-founders of Athersys, Dr. Van Bokkelan has served as CEO of the company since its founding, as well as the president of Athersys prior to 2006. Dr. Van Bokkelan holds a double B.A. in Economics and Molecular Biology from the University of California at Berkeley, and a Ph.D. in Genetics from Stanford.

DARA and America Stem Cell Announce Strategic Alliance

Today DARA BioSciences announced a strategic partnership with America Stem Cell Inc. (ASC) for the R&D of transplants in which the adult stem cells known as hematopoietic stem cells (HSCs) are used. The announcement represents a logical continuation of preclinical studies in which dipeptidylpeptidase (DPPIV) inhibitors were found to improve the efficacy of HSC transplantation, which is often employed in the treatment of many malignant as well as non-malignant hematological disorders.

Scientists at DARA will provide the DPPIV inhibitors to scientists at ASC, who in turn will collaborate with DARA in the further development and commercialization of the inhibitors for the clinical therapeutic treatment of patients who need HSC transplants.

Based in Raleigh, North Carolina, the pharmaceutical company DARA BioSciences specializes in the acquisition and development of "small molecule" therapeutics for the subsequent sale or out-licensing of the therapies to larger pharmaceutical companies. The company’s portfolio includes several drug candidates for the treatment of Type II diabetes, psoriasis, and neuropathic pain in cancer patients. One of DARA’s proprietary products, KRN5500, has already successfully completed a Phase II-a clinical trial for neuropathic pain that is secondary to cancer.

Founded in 2005 and located in Carlsbad, California, America Stem Cell Inc. describes itself as "a privately held biotechnology company dedicated to the development and commercialization of enabling technologies to enhance and expand the therapeutic potential of stem cell transplants." The company employs hematopoietic stem cells derived from cord blood, peripheral blood and bone marrow, from which the proprietary products ASC-101 and ASC-201 are formulated, and which, as described on the company’s website, have demonstrated "potential for many other clinical applications such as treatment of inflammation from chemotherapy/radiation, treatment of cancer tumors, autoimmune diseases and myocardial infarction." Previously, ASC has formed a number of other strategic partnerships with other organizations which include the Oklahoma Medical Research Foundation, Vidacord Technologia Biomedica, and the University of Texas M.D. Anderson Cancer Center.

Osiris Announces Milestone Payment in Diabetes Treatment

Today Osiris Therapeutics announced a $750,000 milestone payment from the Juvenile Diabetes Research Foundation (JDRF) for progress in its Phase II clinical trial for the treatment of Type I diabetes. The clinical trial is testing the company’s proprietary product, Prochymal, which is formulated from adult mesenchymal stem cells (MSCs). The milestone payment was triggered when one-half of the patients were enrolled in the study, which has a target enrollment of 60 participants. Additionally, the clinical trial is now being expanded to include pediatric patients and is also conducting enrollment for patients between 12 and 35 years of age.

According to C. Randal Mills, Ph.D., president and CEO of Osiris, "We are proud to be working alongside the JDRF in this landmark trial to evaluate the role of mesenchymal stem cells in patients with Type I diabetes. Caring for kids with limited medical options is a very special part of life at Osiris and we take that responsibility seriously. The progress we are making in this clinical program is remarkable and would not be possible without our patients, clinical teams, and the FDA’s thoughtful and responsive assistance."

Osiris and the JDRF originally entered into the partnership in 2007, for the development of Prochymal as a therapy for Type I diabetes, especially in the early stages of the disease when it has been newly diagnosed.

One of the many autoimmune diseases, Type I diabetes is characterized by the body’s destruction of its own beta islet cells – the cells of the pancreas which produce insulin. Conventional medical therapies currently offer no known effective treatment for the disease, but adult stem cell therapy may now offer the first therapy which not only reverses the course of diabetes but also regenerates lost beta cells. MSCs were shown in a preclinical trial conducted by Genzyme to preserve beta cell function, and a number of other studies have also demonstrated that MSCs have the ability to generate new cells that resemble beta islet cells in morphology and function.

In addition to this Phase II clinical trial for Type I diabetes, Prochymal is also currently in Phase III clinical trials for acute steroid-refractory graft-versus-host-disease (GvHD), as well as Phase II clinical trials for the treatment of acute myocardial infarction, Crohn’s disease, and chronic obstructive pulmonary disease (COPD). Prochymal is the only stem cell product currently on the market which has been granted both Fast Track and Orphan status by both the U.S. FDA (Food and Drug Administration) and the European Medicines Agency. The MSCs contained in Prochymal are obtained from the bone marrow of healthy adult donors and are specially formulated according to a proprietary process for intravenous infusion. Osiris is also developing another adult stem cell product, Chondrogen, which is currently in clinical trials for the treatment of osteoarthritis of the knee.

A leader in adult stem cell therapies, Osiris Therapeutics is focused on the development of products for the treatment of inflammatory, orthopedic and cardiovascular diseases. In November of last year, Osiris formed a strategic alliance with the biotech company Genzyme that was valued at over $1.3 billion. In 2007, the two companies were awarded a $224.7 million contract from the U.S. Department of Defense for the development of Prochymal in the treatment of radiation sickness.

(Please see a number of related news articles on this website pertaining to Osiris Therapeutics, including, "Adult Stem Cells Treat Diabetes", dated June 29, 2009).

Bioheart Approved for Clinical Trial

Bioheart announced today that it has received U.S. FDA approval to begin testing it proprietary adult stem cell product, MyoCell SDF-1, for use in the treatment of heart failure. The Phase I clinical trial has a target enrollment of 15 patients and is scheduled to commence later this year.

MyoCell SDF-1 contains autologous (in which the donor and recipient are the same person) adult myogenic stem cells that are derived from each patient’s own thigh muscle and which are then genetically modified to produce specific growth factors (such as the cytokine known as stromal cell-derived factor-1) which are involved in the regeneration of muscle tissue. According to Howard Leonhardt, chairman and CEO of Bioheart, "To our knowledge, this will be the first clinical trial ever to test a combination gene and stem cell therapy for cardiovascular disease."

Headquartered in Florida and founded in 1999, Bioheart is focused on the development and commercialization of autologous adult stem cell therapies for the treatment of chronic and acute heart damage. As described on their website, "Our lead product candidate is MyoCell, an innovative clinical therapy designed to populate regions of scar tissue within a patient’s heart with autologous muscle cells, or cells from the patient’s body, for the purpose of improving cardiac function in chronic heart failure patients. The core technology used in MyoCell has been the subject of human clinical trials conducted over the last six years involving 95 enrollees and 76 treated patients. Our most recent clinical trials of MyoCell include the SEISMIC Trial, a completed 40-patient, randomized, multicenter, controlled, Phase II-a study conducted in Europe and the MYOHEART Trial, a completed 20-patient, multicenter, Phase I dose-escalation trial conducted in the United States."

Additionally, Bioheart has also been cleared by the U.S. FDA to proceed with its "MARVEL Trial" – a 330-patient, multicenter Phase II/III trial of MyoCell to be conducted in North America and Europe. Additional products in Bioheart’s pipeline include multiple candidates for the treatment of heart damage such as the Bioheart Acute Cell Therapy, a proprietary formulation of autologous adult stem cells derived from adipose tissue.

Veterinary Adult Stem Cell Therapies Rapidly Progressing

Cris, a 5-year-old police dog in the San Francisco Bay Area, was suddenly faced with an early retirement following a muscle injury. Similarly, the 12-year-old mare and winner of the 2006 championship in Scotland, Marsh Mayfly, was incapacitated after incurring a torn tendon during a competition. But now, both animals have returned to their productive careers after having been treated with their own adult stem cells. In fact, in Cris’s case, a sonogram revealed that the dog’s previously injured hamstring muscle had been completely restored to its normal condition a mere 8 weeks after the adult stem cell therapy was administered.

Collectively, the U.S. company Vet-Stem and the U.K. company MedCell Biosciences have treated over 5,500 horses and 1,700 dogs with their respective autologous adult stem cell therapies, for which veterinarians usually charge around $3,000 per procedure. According to Dr. Hubert Kim, orthopedic surgeon and director of the Cartilage Repair and Regeneration Center at UC-San Francisco, "The results in animals provide an exciting look forward into what human therapies might look like. It gives you a snapshot of what may be possible."

As Dr. Gregory Ferraro, director of the Center for Equine Health at UC-Davis, explains, "Stem cell therapeutics is the most exciting development that has occurred in the 38 years I’ve been a veterinarian. By treating animal disease with stem cells, we can learn to treat animals better and find new ways to help humans."

The University of California at Davis boasts an impressive veterinary adult stem cell program which was funded in part by a $2.5 million donation from Dick Randall, a former real estate executive who now owns and breeds competition horses. When Hustlers Starlight, one of Randall’s horses, suffered a ligament injury, the veterinarian recommended Vet-Stem’s services. Within 2 months after treatment, the horse was exercising with a rider once again. Since then, Randall has had 8 other horses treated with Vet-Stem’s procedure. Similarly, Tim McQuay, who operates the 200-horse facility at McQuay Stables in Tioga, Texas, has had 50 horses treated by Vet-Stem, 90% of whom have shown dramatic improvement. Not only do the autologous adult stem cells regenerate damaged tissue, but they also exhibit important immunomodulatory properties that reduce inflammation. A number of clinical trials in horses and dogs have been published in the veterinary literature and are believed to be directly translatable to human therapies. As Sean Owens, assistant director of the Regenerative Medicine Laboratory at UC-Davis, points out, "Sometimes things get driven along because the public wants it. We want to show if this is as effective as the public thinks."

According to Linda Powers of Toucan Capital in Bethesda, Maryland, which provided $2.4 million in start-up funding for Vet-Stem in 2002, "The market is gigantic. We Americans are crazy for our pets." This year Vet-Stem expects to report around $4.5 million in revenue.

Indeed, the U.S. veterinary market is one of the largest in the world, which is precisely why MedCell of the U.K. entered the U.S. market last year by opening a branch in Florida, from which its VetCell unit has treated around 2,500 horses thus far. Additionally, the company also treats between 80 and 100 dogs per month.

While Vet-Stem’s procedure takes less than 48 hours to produce a ready-to-deliver therapy from adipose-derived stem cells, MedCell’s procedure takes 3 to 4 weeks to produce a stem cell therapy from bone-marrow-derived stem cells. In either case, the results are directly translatable to humans, and MedCell has received authorization from British regulators to begin human clinical trials during the first quarter of 2010 for the use of bone-marrow-derived autologous adult stem cells in the treatment of torn Achilles tendons and rotator cuffs. Results of the clinical trial are expected to be available in time for promotion of the treatment during the 2012 Olympic Games in London.

Jan Nolta, director of the human stem cell program at the UC-Davis medical school, estimates that at least 1,000 people have participated in U.S. FDA-approved clinical trials in which adult stem cells were used as therapies for a wide variety of medical conditions which include not only orthopedic problems but also heart disease and autoimmune disorders, among others. By sharp contrast, not one person has yet received human embryonic stem cells in any clinical trials. As Robin Young, an investment analyst who follows stem cell companies, points out, "Orthopedics will be the sector of medicine where new technologies like stem cells will find their first utilization."

According to Dr. Gary Brown, the veterinarian who treated Cris the police dog as well as two other dogs, all 3 dogs "have done fantastic. We’ve got reason for hope here. We can take dogs that would go into early retirement and keep them fighting bad guys for many years."

Heart Stem Cells Activated for Healing

Scientists have discovered a new method for stimulating endogenous heart stem cells to heal damaged heart tissue. Although the study was conducted in an animal model, the results of the study have direct applications to the treatment of various heart conditions in humans.

Led by Dr. Bernhard Kuhn of Harvard Medical School, researchers at Children’s Hospital in Boston have found that the protein neuregulin1 (NRG1) can be used to stimulate endogenous heart stem cells to re-enter the cell cycle, thereby allowing the stem cells to regenerate new heart tissue.

As Dr. Kuhn explains, "To my knowledge, this is the first regenerative therapy that may be applicable in a systemic way. In principle, there is nothing to preclude this going into the clinic. Based on all the information we have, this is a promising candidate."

For example, Dr. Kuhn and his colleagues surmise that someday it might be a routine protocol for patients to receive daily infusions of NRG1 over a period of weeks. As Dr. Kuhn adds, "Contemporary heart failure treatment is directed at making the remaining cardiomyocytes function better, and improvements in outcomes are harder and harder to achieve because these therapies have become so good. But despite this, heart failure is still a fatal disease. Therapies that replace lost heart muscle cells have the potential to advance the field."

Adult stem cells are already known to reside in a number of various tissue types throughout the human body, and they are suspected of residing in all tissue types. Although an endogenous heart stem cell has been identified and is known to exist, it does not exist in large numbers throughout the heart and is therefore not usually sufficient, in and of itself, to repair damaged heart tissue following an acute event such as a heart attack. A number of studies have examined various ways of stimulating other types of stem cells that are not found in the heart to differentiate into new heart cells, but Dr. Kuhn’s study is unique in that it has demonstrated a novel approach to stimulating the endogenous heart stem cells that are already in the heart to regenerate the heart’s own tissue.

In the study, the scientists treated mice with daily injections of NRG1, beginning at one week following the laboratory-induced injury. Within 12 weeks, the mice not only exhibited improved heart function, but they were also found to have an increased number of resident heart muscle cells as well as a reduction in heart muscle scar tissue. As Dr. Kuhn explains, "Most of the related cell death had already occurred. When we began the injections, we saw replacement of a significant number of cardiomyocytes resulting in significant structural and functional improvements in the heart muscle."

In 2007 the the same team of scientists reported that the protein periostin – which is found in developing fetal heart and injured skeletal muscles – also induces cardiomyocyte production and improved heart function in rats. Instead of being injected, however, the periostin was administered via patches that were placed directly on the heart tissue. In light of this current, new study, further trials are now proposed in which periostin and NRG1 could be used together as a combined therapy. According to Dr. Kuhn, "During initial treatment, patients might receive neuregulin injections, and once they are stable and out of the ICU they might be taken to the cath lab for a periostin patch."

According to Duke University cardiologist Dr. Richard C. Becker, who is also a spokesman for the American Heart Association, "This is something that I suspect people in the field of cardiology will be very excited about, and I suspect this interest will stimulate additional research."

Stem Cell Therapies Are Not Just for the Dogs

Prior to being diagnosed with severe arthritis last year, Ezri used to compete in agility contests. But then the ten-year-old Border Collie began slowing down and showing signs of pain in her front paws. According to Ezri’s owner, Kim Galusha, "She was limping and we tried all kinds of different pain medications and arthritis treatments but nothing helped. She got to the point where all she wanted to do was sleep on the couch."

Thanks to veterinary surgeon Dr. Stephen Kerpsack, however, the dog underwent a successful autologous adult stem cell transplant. Dr. Kerpsack derived approximately 2 tablespoons of fat from Ezri’s abdominal adipose (fat) tissue, which was then mailed the the Vet-Stem laboratory in San Diego where the adult stem cells were isolated, expanded and returned within 48 hours to Dr. Kerpsack who injected the adult stem cells directly into the arthritic joints of Ezri’s front legs. Within 4 to 6 weeks, Ezri was back to her usual self. According to Kim, "You could just tell she had a real big attitude change. She wanted to play."

As Dr. Stephen Kerpsack explains, "In that fat are what are called stem cells. The stem cells have the ability to become other types of cells, which can repair tissue in the body."

As previously reported a number of times on this website, the company Vet-Stem continues to see consistently high success rates in both canine and equine clinical applications, with an 80% efficacy rate and a 100% safety rate in the animals that are treated with Vet-Stem’s autologous adult stem cell procedure. In other words, 80% of the animals treated are found to experience improvement in their condition with a reduction and often a full elimination of the need for medication, while adverse side effects have not been reported in any of the treated animals.

Companies such as Vet-Stem in the U.S. and VetCell in the U.K. have accumulated numerous documented cases of the benefits of autologous adult stem cell therapy in animals. To name just a few of the advantages, adult stem cell therapy yields faster healing and shorter recovery times than surgical treatments do, and adult stem cell therapy does not pose a risk of any side effects like medications do. Additionally, since the adult stem cells are autologous, there is no risk of immune injection. The U.K. company VetCell derives the autologous adult stem cells from the animal’s bone marrow, and to date has treated approximately 1,700 horses with an 80% success rate. By comparison, the U.S. company Vet-Stem derives the autologous adult stem cells from the animal’s adipose (fat) tissue, and to date has treated over 2,000 dogs and over 3,000 horses, also with an 80% success rate. With both companies, the procedure is quick, simple, and minimally invasive. Although the treatment is more expensive than conventional veterinary procedures, the adult stem cell treatment actually works, and noticeable improvement is seen almost immediately in all cases, not just in the 80% of cases that exhibit a complete recovery. By sharp contrast, however, conventional surgical and pharmacological therapies, which might initially be less expensive than stem cell therapy, only have a 30% success rate and therefore in the long-term are actually more expensive when repeated treatment is needed, or when improvements are not seen at all. Additionally, reinjury is significantly lower in animals who receive autologous adult stem cell therapy, due to the mechanism of action by which these stem cells activate the healing process. As Dr. David Mountford, a veterinary surgeon and chief operating officer at VetCell, explains, "After 3 years, the reinjury rate was much lower in stem-cell-treated animals: about 23% compared with the published average of 56%" for animals treated with conventional therapies.

Not only do the stem cells automatically target the injured tissue, but they also stimulate other endogenous stem cells which in turn are mobilized into action and participate in the healing and repair process. Although improvements are usually dramatic and immediate, even after the first injection, additional injections may be necessary, depending upon the age and condition of the animal. Very few animals ever need more than a total or 2 or 3 treatments, however, before they are fully restored to their natural, pain-free state of mobility – which contrasts sharply with conventional therapies such as most prescription medications which may need to be taken indefinitely, without ever producing any tangible signs of improvement and while even possibly causing further damage to the animal through dangerous side effects and other associated risks.

Ordinarily, injuries of the bones, joints, tendons and ligaments result in scarring of the tissue, which not only prevents full healing but also often leads to further injuries at a later time. Conventional medical therapies do nothing to address the problem of scar tissue directly, and surgical procedures actually make the problem worse by increasing the severity of tissue scarring which in turn merely exacerbates later complications that will inevitably result from the scar tissue, since such tissue can never be fully rehabilitated. Adult stem cell therapy, however, allows for the full and complete healing of tissue without scarring, which not only reduces the risk of re-injury of the same tissue at a later date but also restores full physical performance and function, usually very quickly and dramatically. Such is the case in humans as well as in animals. According to Dr. Robert Harman, veterinarian and founding CEO of Vet-Stem, "Our success in animals is directly translatable to humans, and we wish to share our evidence that stem cells are safe and effective." Additionally, adipose-derived stem cells have been shown in a number of studies to exhibit highly beneficial immunomodulatory properties – which reduce inflammation, among other benefits – in addition to stimulating the regeneration of cartilage and other tissue. (E.g., "Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis", by N.H. Riordan et al., published in the Journal of Translational Medicine in April of 2009, of which Dr. Harman is a coauthor). As Dr. Harman further adds, "In the last couple of years, evidence has come out that the cells we use reduce inflammation and pain, and help lubricate the joint. About 200,000 hip replacements are done every year in humans. That’s a very good target for someone to look at cell therapy."

Vet-Stem uses exclusively adult stem cells, derived from each animal’s own tissue. Since the cells are autologous (in which the donor and recipient are the same animal), there is no risk of immune rejection. More specifically, the stem cells that are harvested in Vet-Stem’s procedure are mesenchymal stem cells, which are highly potent adult stem cells that are also found in bone marrow and umbilical cord blood. Numerous scientific and clinical studies have been published in the peer-reviewed medical literature detailing the regenerative properties of mesenchymal stem cells.

No embryonic stem cells are ever used in Vet-Stem’s therapies, since embryonic stem cells are highly problematic in the laboratory, whether they are of human or non-human origin. Among other problems, the risk of teratoma (tumor) formation disqualifies embryonic stem cells for use as a clinical therapy, even in animals. Adult stem cells, however, do not pose such risks and are therefore rapidly accumulating a consistent history of successful clinical treatments in veterinary, as well as in human, medicine.

Human Diabetics Treated With Pig Cells

Scientists at the New Zealand company Living Cell Technologies have begun clinical trials today in which cells from newborn pigs will be used for the treatment of Type 1 diabetes. Specifically, the transplanted cells will consist of the beta islet cells from the pancreas, which are the cells that produce insulin. The experimental procedure will be tested on eight human volunteers.

A number of other scientists have expressed concern over the trials, however, pointing out that it’s too early to begin testing on humans since no preclinical animal studies were conducted. Among other risks, scientists caution that any of the numerous viruses that are endemic to pigs could "jump species" and infect the humans, therefore not only causing illness in the 8 volunteers but also potentially triggering a new retroviral pandemic.

The medical director of Living Cell Technologies, Dr. Bob Elliott, however, insists that "there is no evidence of a risk." He describes the piglets that have been selected for the study as having been recovered from 150 years of isolation on islands south of New Zealand, and therefore carry no known infectious agents. It is the unknown infectious agents, however, which have other scientists concerned.

According to Dr. Martin Wilkinson, a past chairman of the New Zealand Bioethics Council, the pig cells pose "a very small risk, low enough to be managed in human recipients. There is no conclusion that it should be banned just because of the possibility of risk." There are many other scientists who disagree, however.

Dr. Elliott has conducted two previous human clinical trials of this nature, the first with 6 patients in New Zealand in 1995 and 1996, and the other with 10 patients in Russia which began in 2007. According to Dr. Elliott, some of the subjects responded with increased insulin production, while in other subjects the implanted cells stopped producing insulin after a year, and there were still other subjects whose bodies rejected the pig cells. None of the human trials were preceded by preclinical animal studies, nor has any scientific paper been published on any of these human trials, although Dr. Elliott says that a paper is scheduled for release by the end of 2009.

Such news represents the opposite extreme of that which most countries face. At the opposite end of the spectrum from the U.S. FDA regulatory regime is a total absence of regulatory oversight. While Phase I, Phase II, and Phase III clinical trials in the U.S. typically require a decade or more of human clinical testing – and must always, without exception, be preceded by successful preclinical trials on animals – the opposite extreme is a country in which preclinical animal trials are not required at all prior to testing on humans. In the first case, patients can grow old and die while waiting around for government approval of a scientifically legitimate clinical therapy; while in the second case, patients can die young as a direct result of the experimental therapy which they have volunteered to receive. Clearly, the issue of exactly how federal government regulatory agencies should adapt their laws to keep pace with medical science is a global problem that is in urgent need of being addressed.

For New Zealand in particular, it seems as though a number of regulatory policy issues remain to be resolved. Previous attempts to form a joint oversight agency with Australia – which would have been known as the Australia New Zealand Therapeutic Products Authority – were indefinitely suspended in July of 2007 when the New Zealand State Services Minister, Annette King, announced at that time that, "The government is not proceeding at this stage with legislation that would have enabled the establishment of a joint agency with Australia to regulate therapeutic products. The (New Zealand) Government does not have the numbers in Parliament to put in place a sensible, acceptable compromise that would satisfy all parties at this time. The Australian Government has been informed of the situation and agrees that suspending negotiations on the joint authority is a sensible course of action."

At the very least, it would seem appropriate to establish some sort of regulatory oversight which requires proof of safety and efficacy in preclinical animal studies before allowing human clinical trials to commence, in which human patients unwittingly become the very first guinea pigs on whom a new and experimental procedure is tested.

Additionally, it would also seem as though the 8 individuals in New Zealand who have volunteered for the experimental pig cell therapy are unaware of other clinical trials which have already been conducted elsewhere throughout the world, and which have utilized adult stem cells from humans, not from animals, in the treatment of human Type 1 diabetes.

For example, it has been demonstrated a number of times that when mesenchymal stem cells (MSCs) are administered to mice whose beta cells have been damaged by the administration of the toxic compound streptozoicin, the MSCs increase insulin production in the mice. The use of adult stem cells to induce islet regeneration is also currently undergoing U.S. FDA-approved clinical trials at the University of Miami. The possibility of stimulating islet regeneration does not necessarily depend on differentiation of the adult stem cells into new islet cells but may also occur through the production of growth factors made by the stem cells and which allow endogenous pancreatic stem cells to start proliferating, thereby healing the injured area. For example, from a mouse study in which chemically-labeled bone marrow-derived MSCs were administered to mice with injured beta cells, the MSCs were actually found to stimulate the islet-activating pancreatic duct stem cell proliferation. The possibility of stimulating endogenous pancreatic duct stem cells by pharmacological means is currently under investigation by the company Novo Nordisk, who has administered a combination of EGF and gastrin to diabetic patients in Phase II clinical trials. However, given that adult stem cells produce a "symphony of growth factors" in addition to gastrin and EGF, the administration of adult stem cells seems to possess a higher possibility of success. Both from the ability of MSCs to differentiate directly into pancreatic cells as well as by their ability to activate endogenous pancreatic stem cells, from preclinical as well as clinical data available throughout the world, there is strong evidence to indicate that MSCs are therapeutic for the restoration of insulin production in the treatment of diabetes.

Furthermore, it is also known that adult stem cell therapy can at least ameliorate and in some cases even reverse the secondary pathologies that are associated with diabetes, such as the variety of complications that result from uncontrolled blood glucose levels such as peripheral vascular disease, neuropathic pain and the dysfunction of various organs such as renal failure. Peripheral vascular disease, for example, is caused by endothelial dysfunction, but it is also known that there is a constant migration of endothelial progenitors from bone marrow sources to the periphery. This migration can be measured through the quantification of the content of endothelial progenitor cells in peripheral blood, and in this manner it has been observed that patients who are diabetic and who have higher levels of circulating endothelial progenitors usually have a lower risk of coronary artery disease. The administration of adult stem cells is also known to rejuvenate old or dysfunctional endothelial cells and to increase responsiveness to vasoactive stimuli. On the other hand, neuropathy, which is a major cause of persistent, chronic pain in diabetic patients, has been reversed in patients who were treated with various adult stem cell populations. This was further documented in highly defined animal models of pain in which bone marrow stem cell administration was found to accelerate nerve healing and to reduce chronic pain. The ability of stem cells to naturally repair injured organs has similarly been described for the heart, the liver and the kidneys. Mechanistically, injured organs transmit elaborate chemical signals, such as SDF-1, which attract stem cells and induce cellular differentiation of the required tissue. Accordingly, based upon evidence such as this, adult stem cell therapy also offers the ideal treatment of secondary complications associated with diabetes.

Additionally, adult stem cells inhibit the mediators that cause insulin resistance. As previously described, one of these mediators which causes the body to resist insulin is known as TNF-alpha (tumor necrosis factor alpha). It has been demonstrated that patients with type II diabetes have abnormally high levels of TNF-alpha, and it is also known that the amount of TNF-alpha in the plasma has been shown to correlate with extensive insulin resistance. In other words, the more TNF alpha that is in a person’s blood plasma, the greater is that person’s insulin resistance. MSCs have been found to shut down TNF-alpha production, thereby shutting off inflammation. A number of studies have documented this fact, one of which was published by Aggarwal et al., in 2005 in the journal Blood, entitled, "Human mesenchymal stem cells modulate allogeneic immune cell response." So there is a great deal of evidence documenting the ability of MSCs to correct the body’s resistance to insulin, with applications to Type I as well as Type II diabetes.

Many studies have also demonstrated that adult stem cells can actually become pancreatic-like stem cells. One such study, conducted by Sun et al., was published in 2007 in the Chin Med J., entitled, "Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro." In this and other similar studies it was demonstrated that stem cells derived from bone marrow can produce insulin in vitro after a "glucose challenge", in which glucose is given to MSCs that have been treated to become similar to pancreatic cells. The results consistently indicate that the MSCs are in fact becoming cells which produce insulin in response to the glucose in vitro, and a number of studies also exist in vivo. One such study was conducted by Lee et al., and published in 2006 in the Proceedings of the National Academies of Science, entitled, "Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice." In this study, the investigators used the streptozoacin toxin to kill the beta cells in the pancreas of mice, and when MSCs were administered to the mice, insulin production was shown to increase. Another study was conducted by Tang et al., and published in the journal Diabetes, entitled, "In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow." In this study, the investigators took stem cells from bone marrow, cultured them, and made cells that appeared to be the beta islet cells. Specifically, the scientists took MSCs, cultured them in glucose and added nicotinamide (the amide part of nicotinic acid, also known as vitamin B3), which is an agent that is known to assist in pancreatic regeneration. The result was the formation of a group of cells that look and behave like pancreatic beta islet cells. The phenotypic expression of these cells does not include CD34 or CD45, therefore these cells are not hematopoietic, but their genotypic expression includes genes that are specific to the pancreas, such as PDX-1, insulin, glucose transporters, etc., so these cells would appear to resemble pancreatic beta islet cells in behavior and function.

Additionally, a group of scientists in Argentina reported in 2007 that 85% of Type II diabetic patients who were treated with their own MSCs were able to stop using insulin. In this technique, stem cells were administered to each patient via a catheter which is directed through the endovascular arteries directly to the pancreatic parenchyma. The catheterization is employed via an arterial route since arteries deliver oxygenated blood to the organs of the body. The catheter is inserted through a puncture in the groin under local anesthesia, and no stitches are required. More than 70 cases of diabetes have been treated according to this technique, with some of these patients having had diabetes for as long as 30 years, and with many of them exhibiting minimal response to conventional treatment. After receiving treatment by this procedure, 90% of these patients have exhibited significant progress which has even led to the complete withdrawal of original medication in these instances. No complications have been seen in any of the patients, even 9 months after treatment. Similar techniques at other laboratories for the treatment of type II diabetes use the patient’s own stem cells which are derived from the patient’s own bone marrow. These bone marrow-derived stem cells are extracted from the patient’s hip and are then separated and expanded in the laboratory, after which time they are injected back into the patient through an arterial catheter in the groin with the use of local anesthesia, as described above.

It is therefore now known that MSCs can correct the two underlying mechanisms of diabetes, namely, the progression of insulin resistance and pancreatic cell death. In regard to the secondary complications, specifically, peripheral neuropathy and neuropathic pain, numerous case reports have documented the neurogenerative abilities of stem cells, and many animal studies have proven that stem cells can prevent neuropathic pain through a direct analgesic effect. One such study was conducted by Klass et al., and published in 2007 in the journal Anesth. Analg., entitled "Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy." Many other clinical reports have also supported the fact that adult stem cells can help regenerate neurons. Similarly, in peripheral artery disease, endothelial dysfunction often results because patients with type II diabetes have low concentrations of circulating endothelial progenitor cells, which are the cells that make new endothelium. Circulating endothelial cells correlate with vascular health, and bone marrow stem cells are rich in endothelial precursor cells. The administration of bone marrow stem cells can therefore improve endothelial health by increasing vascular endothelial function. Another major complication of type II diabetes is kidney failure. This topic was addressed in the same study cited above, conducted by Lee et al., and published in 2006 in the Proceedings of the National Academies of Science, entitled, "Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice." In this study, the mice had been induced to become diabetic through streptozoacin, and the kidneys were examined for inflammatory macrophage infiltration. As with pancreatic tissue, the stem cells were found to home-in on and repair the damaged renal tissue.

Type II diabetes is becoming an increasingly common problem throughout the world, especially in industrialized nations. Although type I diabetes is not as common as type II diabetes, clinical studies have also shown success in treating type I diabetes with adult stem cells. In a study conducted in 2007 by J.C. Voltarelli of Brazil, fourteen patients with type I diabetes were treated with autologous bone marrow stem cells that had been mobilized into the peripheral blood circulation from which they were collected. During follow-up procedures that were conducted between 7 and 36 months, all fourteen of the patients were able to discontinue insulin use.

Adult stem cell therapy has therefore already been described numerous times throughout the medical literature as the first therapy for both type I and type II diabetes which not only alleviates the symptoms of diabetes but also actually reverses the progression of the disease by regenerating damaged tissue and restoring insulin production.

(Please see the related subsection on this website, entitled "Diabetes", listed in the "Research" section).