What Works Better: Stem Cell Mobilization or Stem Cell Administration for Brain Injury

Bakhtiary et al. Iran Biomed J. 2010 Oct;14(4):142-9.

Bone marrow mobilization is used as part of hematopoietic stem cell transplantation in order to collect donor bone marrow stem cells without having to puncture the bone. The process of mobilization is induced by administration of the drug G-CSF, which is approved by the FDA. One interesting question is if instead of giving patients stem cell therapy, if one could simply give G-CSF and have their own stem cells “mobilize” and treated the area of injury. This would be simple and economical as compared to injection of stem cells.

In order to test this, a group from Iran used a rat model of traumatic brain injury and gave either G-CSF or bone marrow derived mesenchymal stem cells.

There were three groups of 10 rats used in the experiments. All rats were subjected to traumatic brain injury by use of a “controlled cortical impact device”. The first group received 2 million bone marrow derived mesenchymal stem cells. The second group received G-CSF to mobilize the bone marrow stem cells. The third group served as a control group. All injections were performed 1 day after injury into the tail veins of rats. The bone marrow derived mesenchymal stem cells were labeled with Brdu before injection into the tail veins of rats. Animals were sacrificed 42 days after TBI and brain sections were stained by Brdu immunohistochemistry.

As compared to controls, both the G-CSF mobilized and the bone marrow mesenchymal stem cell groups had a statistically significant improvement in behavior. When animals were sacrificed at 42 days the observation was made that labeled bone marrow mesenchymal stem cells homed into the area of injury and appeared to contribute to repair.

Although more date is needed when it comes to clinical application, it may be feasible to use G-CSF as part of therapy for traumatic brain injury. One caveat that we find with this is that G-CSF, as its name suggests (granulocyte colony stimulating factor), actually stimulates both increase in granulocyte number and function. While in a controlled laboratory environment brain damage may be relatively “sterile”, in the clinical setting it may be that increased granulocytes may contribute to a higher extent of inflammation and therefore more tissue damage. On the other hand it is possible that mesenchymal stem cells because of their known anti-inflammatory activity may function not only to regenerate the injured brain tissue but also to provide an anti-inflammatory effect.

Scientists identify and isolate adult mammary stem cells in mice

(Times of India) It is well-known that stem cells exist in adult tissues. The most commonly known stem cell, the bone marrow stem cell, plays the physiological role of generating billions of blood cells per hour while being capable of making copies of itself. Subsequent to the discovery of the bone marrow stem cell in the 1960s by Till and McCulloch, other types of stem cells were subsequently identified in other tissues. For example, the brain contains a stem cell compartment term the “dentate gyrus” which is capable of creating new neurons at a basal rate, with acceleration of new neuron formation during pregnancy or after stroke. Other tissue specific stem cells include those found the in liver, the heart, and the spleen. One common characteristic amongst stem cells is their ability to efflux various drugs through expression of the multi-drug resistance (MDR) protein, as well as preferential state of quiescence in absence of growth factor activation.
One important reason to seek tissue-specific stem cells is that if they could be expanded in large numbers they may theoretically be superior to other stem cell types for therapeutic uses. For example, culture-expanded cardiac specific stem cells are superior to bone marrow stem cells at accelerating healing of the heart muscle after a myocardial infarction. These types of stem cells are actually in clinical trials at present.
The other reason for identifying tissue-specific stem cells is that they may be useful in identifying molecular events that occur in the process of normal tissue changing to cancer. This is of interest because cancer stem cells are believed to originate from tissue-specific stem cells acquiring numerous mutations.
Currently researchers from the Fred Hutchinson Cancer Research Center have identified a tissue-specific stem cell in the breast. The scientists developed genetically engineered mice in which the green marker protein GFP was used to identify only breast cells that express the stem cell phenotype. The findings appeared in peer-reviewed journal Genes and Development.
“Until now, we have not been able to identify stem cells in mammary tissue. They have never been detected before with such specificity. It is extraordinary. You can see these green stem cells under the microscope in their pure, natural state,” said Larry Rohrschneider of the Hutchinson Center.
It was demonstrated that the activity of the mammary stem cells is modulated during times associated with breast growth such as puberty and pregnancy.
“We have found that those transplanted green stem cells can generate new mammary tissue and this tissue can produce milk, just like normal mammary epithelial cells,” said co-author Lixia Bai.
“Identification of the exact stem cell and its location is the first critical and fundamental step toward understanding the regulatory mechanisms of these important cells,” she said.
The technology described in the publication may be useful in isolating and expanding human breast specific stem cells. If these studies are reproducible, it will be of great interest to see whether they still possess ability to home to injured tissue, which to date has been clearly demonstrated in bone marrow stem cells but not with too much clarity with cardiac –specific stem cells or other types of tissue-specific stem cells.

Stem cell therapy benefits patients with chronic heart failure—study

(Neharika Sabharwal) After a heart attack the myocardium (heart muscle) undergoes a period of damage during which cells of the body attempt to heal the injured tissue. This occurs through stem cells found in the heart itself, called cardiac specific stem cells (CSC) as well as bone marrow stem cells which seem to exit the bone marrow, enter circulation, and migrate towards the area of cardiac damage.

Given that the bone marrow stem cells seem to both directly become new heart cells, as well as stimulate formation of new blood vessels that accelerate the healing process, it may be theoretically beneficial to administer bone marrow stem cells to patients after a heart attack. Administration of stem cells is usually performed in these patients by means of a balloon catheter. This device temporarily occludes the artery that is feeding the blood vessel that provides circulation to the area of the injured muscle. While occlusion is occurring cells are administered. This allows the cells to enter the cardiac circulation in a highly concentrated manner. This type of stem cell therapy is termed “post-infarct intracoronary administration of stem cells”.

The use of intracoronary bone marrow transplantation has been published in many clinical trials with overall success in stimulating heart muscle function as judged by the left ventricular ejection fraction. Additionally, bone marrow stem cells have been demonstrated to reduce pathological remodeling by inhibiting the dilation of the ventricles that occurs after a heart attack.

While short-term effects of bone marrow stem cell administration are well-known, little is known about long term effects. A recent study, called the STAR Heart Study, aimed to compare bone marrow cells versus optimal conventional therapy in patients with heart failure due to healed myocardial infarction.

The study demonstrated that intracoronary bone marrow stem cell therapy not only improves ventricular performance and quality of life but also the long term rate of survival in patients with chronic heart failure, claims a new study.

According to researchers, the beneficial effects of stem cell therapy were perceived within three months of the treatment and the effect continued for well over five years. Lead scientist of the study, Bodo-Eckehard Strauer of Duesseldorf’s Heinrich Heine University in Germany said, “Our study suggests that, when administered as an alternative or in addition to conventional therapy, bone marrow cell therapy can improve quality of life, increase ventricular performance and increase survival.”

Currently several companies are developing devices that allow for the use of patient’s own stem cells for intracoronary administration post infarct. One such company is the Hackensack NJ based Amorcyte Inc, which uses standard bone marrow extraction procedures, isolates CD34 positive cells using the Baxter Isolex device, and subsequently infuses the isolated cells using a catheter based technique. The company Aldagen is also performing a similar procedure, however instead of purifying stem cells based on CD34 they are using aldehyde dehydrogenase expression as a means of isolating stem cells from non-stem cells from the bone marrow.

The STAR study was reported at the ‘European Society of Cardiology (ESC) 2010 Congress. It tracked 391 patients with chronic heart failure because of ischemic heart disease following a heart attack. Out of 391 patients, 191 agreed to have the bone marrow stem cell treatment. The remaining 200 who refused therapy participated as the control group.

The patients were monitored for a period of five years after bone-marrow-cell therapy with results at 3 months, one year and five years showing a significant difference between the treatment and control group. At five years only 7 patients who received stem cells died, as compared to 32 in the control group. No treatment associated adverse events of a serious nature were observed.

Dr Mariell Jessup, medical director of the Penn Heart and Vascular Center at the University of Pennsylvania stated, “The hope is that by injecting stem cells into the scarred area, you will bring life back to that area and induce healthy muscle…There’s been ongoing excitement about using stem cells to treat heart disease for some time and this study certainly adds to it.”

Immunomodulation of Delayed-Type Hypersensitivity Responses by Mesenchymal Stem Cells Is Associated with Bystander T Cell Apoptosis in the Draining Lymph Node.

(Lim et al. J Immunol) Immune responses are quantified in many ways. Typically one thinks about immunity as the ability of an organism to overcome infection with another organism. However this test is impossible to perform in a reproducible, quantitative, and ethical way in humans. An alternative test was developed by immunologists called delayed type hypersensitivity (DTH) reaction. In this assay the patient is immunized with an antigen and subsequently the antigen is painted on the skin. The T cells that recognize the antigen then home to the skin, activate macrophages, which in term produce a swelling reaction that can be visualized easily.

Mesenchymal stem cells (MSC) have been described to be immune modulatory, however to our knowledge this is the first publication in which effects of MSC on DTH were examined.

In this paper the authors reported that subsequent to induction of a DTH response in which MSC were administered to the host, a small but significant number of MSCs accumulate in the secondary lymphoid organs and attenuate delayed-type hypersensitivity (DTH) response by inducing apoptotic cell death of surrounding immune cells in the draining lymph node (LN).

In order to visualize killing of immune system cells by the administered MSC, the scientists administered fluorescently-labeled MSC intravenously in mice after initiation of DTH. They observed that MSC preferentially accumulated at the boundary between the paracortical area and the germinal center in the lymph nodes, in close proximity to various types of immune cells including T, B, and dendritic cells in a dose-dependent manner.

It was reported that accumulated MSCs markedly attenuated DTH response in proportion to the number of MSCs infused. During the DTH response, the infiltration of T cells in the challenged site was significantly decreased, whereas a number of apoptotic T cells were remarkably increased in the draining lymph node.

Killing of immune cells seemed to be restricted to activated T cells since apoptosis was observed only in the BrdU stained (proliferating) cells. Additionally it appeared that T cell death was mediated by MSC secretion of nitric oxide.

Platelet-Rich Plasma Releasate Promotes Differentiation of Tendon Stem Cells Into Active Tenocytes.

(Zhang et al. Am J Sports Med. ) Platelet rich plasma (PRP) contains products of activated platelets which include numerous growth factors such as fibroblast growth factor, hepatocyte growth factor, insulin like growth factor, etc. Conventionally, PRP is used to promote various healing processes. In the area of sports medicine PRP has been used for the treatment of cartilage injuries and to accelerate their repair.

Given that numerous repair processes have been associated with stem cells, in the current study researchers sought to determine whether PRP may yield an effect on stem cell populations found in the joint called tendon stem cells (TSC).

The scientists found that treatment of TSC with PRP led to the cells taking on a large, well spread, and highly elongated shape. Furthermore, treatment with PRP results in a decrease of nucleostemin expression, which is associated with TSC activation. Treatment with PRP also enhanced TSC proliferation, tenocyte-related gene and protein expression, and total collagen production, all of which indicated that PRCR treatment induced differentiation of TSCs into activated tenocytes.

The possibility that PRP stimulates TSC may be examined in vivo in future experiments. For example, it would be interesting to see which of the many growth factors actually is responsible for the high proliferative response of the TSC.

One other area of interest is whether PRP may be used in absence of tissue culture media for stem cell expansion. Currently one of the major limiting factors in the area of cell therapeutics has been the lack of appropriate supply of fetal calf serum for en masse cell manufacturing. If the growth factors released by PRP are strong enough to stimulate cell proliferation in vitro, then this may be a solution to a big hurdle.

Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study.

Liang et al. Ann Rheum Dis. 2010 Aug;69(8):1423-9.

Mesenchymal stem cells are unique in that on the one hand they are capable of differentiating into a variety of tissues, but on the other hand they also are potently anti-inflammatory and immune modulatory.

Evidence of immune modulation comes from studies that show mesenchymal stem cells: a) directly suppress ongoing mixed lymphocyte reaction; b) produce immune suppressive cytokines such as IL-10; c) produce immune suppressive enzymes such as indolamine 2,3 deoxygenase; d) inhibit natural killer and CD8 cytotoxic T cell activity; e) inhibit dendritic cell maturation; and f) stimulate production of T regulatory cells.

Animal studies covered on our youtube channel www.youtube.com/cellmedicine have shown that mesenchymal stem cells inhibit collagen induced arthritis and experimental allergic encephalomyelitis, which represent human rheumatoid arthritis and multiple sclerosis, respectively.

Since these cells are such potent immune modulators, they have been used with some success in the treatment of immunological diseases such as graft versus host disease (GVHD). Medistem and Cellmedicine have previously used fat derived stem cells, which contain high concentrations of mesenchymal stem cells, in order to treat rheumatoid arthritis. In the current paper mesenchymal stem cells from the bone marrow where used to treat the autoimmune disease systemic lupus erythematosus.

Scientists at the Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, in Nanjing, China, reported a clinical trial of allogeneic (universal donor) mesenchymal stem cells in the treatment of patients with treatment-refractory systemic lupus erythematosus (SLE).

Fifteen patients with SLE who did not respond to conventional treatments where administered bone marrow derived mesenchymal stem cells isolated from allogeneic donors. No chemotherapy or immune suppression was used. Administration of stem cells was performed intravenously.

Mean patient follow up was 17.2+/-9.5 months with 13 patients have been followed for more than 12 months. 15/15 patients presented with clinical improvements subsequent to stem cell therapy. At 12-month follow-up, SLEDAI scores dropped from 12.2+/-3.3 to 3.2+/-2.8 and proteinuria decreased from 2505.0+/-1323.9 to 858.0+/-800.7 mg/24 h. At 1-year follow-up in 13 patients, 2 had a relapse of proteinuria, while the other 11 continue to have decreased disease activity on minimal treatment. Anti-dsDNA levels decreased. Improvement in glomerular filtration rate was noted in two patients in which formal testing was performed. Non-renal-related manifestations also improved significantly. No serious adverse events were reported.

This study demonstrated that mesenchymal stem cells are capable of not only inhibiting the pathological processes in SLE (eg production of anti-dsDNA antibodies) but also reversing renal damage that has occurred as a result of the disease process. The fact that some of the patients relapsed may mean that there is a rationale for multiple administration of mesenchymal stem cells.

Stem Cells for Spinal Cord Injury

The use of mesenchymal stem cells for a variety have
diseases has been published. This includes conditions such as heart failure,
liver failure, stroke, and lupus. One of the attractive features of mesenchymal
stem cells is that they can differentiate into numerous tissues while at the
same time exerting anti-inflammatory activities.

In the situation of spinal cord injury, mesenchymal stem
cells are thought to produce various growth factors that contribute to
regeneration of the damaged nerve. In the paper by Park et al the question was
asked whether Schwann Cells that are differentiated from mesenchymal stem cells
may be a more potent source of therapeutic growth factors. This question was
raised in part because the natural function of Schwann Cells is to produce
factors that accelerate new neuron formation.

The researchers used a growth factor-based differentiation
media to induce the transformation of mesenchymal stem cells into cells that
resemble Schwann Cells. The resulting cells developed a morphology similar to
Schwann Cells and expressed proteins that are specific to this cell type such as
the p75 neurotrophin receptor.

It was found that the Schwann Cells generated from the
mesenchymal stem cells expressed higher amounts of the growth factors hepatocyte
growth factor (HGF) and vascular endothelial growth factor (VEGF) when compared
with non transformed mesenchymal stem cells. When the newly generated cells
were cultured with a neuronal cell line called Neuro2A, a large increase in the
proliferation of the cell line was noted with a decrease in spontaneous cell
death. Transplantation of the artificially generated Schwann Cells into an ex
vivo model of spinal cord injury dramatically enhanced axonal outgrowth. This
was blocked by antibodies to HGF and VEGF.

The authors propose that artificially generated Schwann
Cells without genetic modification are useful for autologous cell therapy to
treat nervous system injury.

One
important question that was not addressed is to what extent are the Schwann
Cells generated from mesenchymal stem cells seen by the immune system. In other
words, is it possible to use Schwann Cells in a universal donor fashion the same
way that mesenchymal stem cells can be used.

Protein Found on Endometrial Regenerative Cells Inhibits Immune Attack

Medistem Inc. (PINKSHEETS: MEDS) announced today publication of a peer reviewed paper identifying a molecule found on the company’s lead product, the universal donor Endometrial Regenerative Cell (ERC), as a key component of cellular escape from immune attack. The study, entitled “Resistance of neonatal porcine Sertoli cells to human xenoantibody and complement-mediated lysis is associated with low expression of alpha-Gal and high production of clusterin and CD59” was published in the journal Xenotransplantation as a collaboration between Medistem and the Institute of Organ Transplantation, Tongji Hospital, in Wuhan, China.

The study found that CD59, a molecule made by ERC, plays an important role in protecting cells from immune rejection when placed in contact with immune components from another species. The ERC is a mesenchymal-like stem cell that Medistem discovered in 2007 capable of generating heart, lung, brain, muscle, blood vessel, pancreas, liver, fat and bone tissue. The original description of this cell, which won the “Publication of the Year Award” may be found at http://www.translational-medicine.com/content/pdf/1479-5876-5-57.pdf.

“One of the fundamental aspects of Medistem’s lead product, the Endometrial Regenerative Cell (ERC), is its ability to function without the need for tissue matching. In other words, the ERC stem cells act as universal donors. We have previously published that human ERC are effective in treating mice having a condition that resembles critical limb ischemia (see paper http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf ). We now believe that expression of the molecule CD59 on ERC may be one of the mechanisms by which these human cells can be used not only as a universal donor for humans, but also for the treatment of numerous diseases across a variety of animal species.” Said Thomas Ichim, CEO of Medistem.

Medistem has filed an IND with the FDA for treatment of critical limb ischemia (severe obstruction of the arteries that leads to decreased blood flow to the extremities) with ERC. Currently the company is in the process of completing additional experiments requested by the FDA before clinical trials can commence. Through physician-initiated compassionate use mechanisms Medistem has already published on human use of ERC in treatment of heart failure, Duchenne Muscular Dystrophy, and multiple sclerosis. A recent peer-reviewed paper describing ERC in treatment of heart failure may be found at http://www.intarchmed.com/content/pdf/1755-7682-3-5.pdf.

Medistem Reports Rheumatoid Arthritis Patient Success Using Adult Stem Cell Protocol

SAN DIEGO, CA – (Marketwire – June 21, 2010) – Medistem Inc. Medistem Inc. together with the Stem Cell Institute reported today publication in the peer reviewed journal Cellular Immunology its paper titled “Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease,” which describes the first use of a patient’s own fat stem cells for treatment of rheumatoid arthritis.

How Fat Stem Cells May Work on Autoimmune Diseases

In collaboration with the company Vet-Stem Inc, the University of Western Ontario, and The University of California San Diego, Medistem scientists detailed the scientific rationale for use of patient’s own fat derived stem cells for “reprogramming” the immune system of patients with autoimmune diseases such as rheumatoid arthritis. A case report of a 67-year-old American woman who recovered from rheumatoid arthritis after intravenous treatment with adult stem cells is provided.

“We have been treating companion animals for osteoarthritis and rheumatoid arthritis for over five years, achieving and publishing excellent efficacy data,” said Robert Harman, CEO of Vet-Stem. “Medistem’s identification of potential mechanisms of action, as well as translation of this technology into the clinic, supports the importance of our findings.”
Medistem previously identified and filed intellectual property covering the co-purification of high concentrations of T regulatory cells using protocols that enrich for adipose derived stem cells, a finding that was later confirmed and published by Diane Mathis’s group from Harvard University (Feuerer et al. Nat Med. 2009 Aug;15(8):930-9). T regulatory cells are used by the body to control autoimmunity, which is explained in this video by Thomas Ichim, the CEO of Medistem.

“We are very excited that Medistem’s protocol for isolation of a patient’s own fat derived stem cells and T regulatory cells, which produced promising results in multiple sclerosis, appears to be useful in rheumatoid arthritis, another autoimmune disease,” said Neil Riordan, Chairman of Medistem.

In a 2009 paper Medistem together with Vet-Stem and University of California San Diego reported substantial clinical improvement in a small group of multiple sclerosis patients treated using a similar protocol. The paper is available at www.translational-medicine.com.

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at www.translational-medicine.com.

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Pluristem’s Off-The-Shelf Placenta-Derived Cell Therapies

Pluristem announced that its "off the shelf" placental stem
cells will be the focus of upcoming talking at investor and medical
conferences. The company Pluristem is currently in Phase I trials assessing its
unique bio-reactor expanded placental stem cells for the treatment of critical
limb ischemia. In contrast to other therapies that use the patient’s own stem
cells (called autologous), the advantage of the "universal donor" or
"allogeneic" approach is that large numbers of cells can be generated according
to defined conditions. Additionally, universal donor cells can be administered
several times at a number that is limited only by the desire of the physician to
escalate the dose. In the autologous situation stem cells are usually taken
from the bone marrow, making it difficult to perform multiple extractions.

Pluristem will present at the International Society for
Cellular Therapy’s (ISCT) 16th Annual Meeting in Philadelphia some updates on
its ongoing programs.

"We recently reported interim top-line results from our
Phase I clinical trials demonstrating that PLX-PAD is safe, well tolerated and
had improved the quality of life of CLI patients in the studies," said Zami
Aberman, Pluristem’s chairman and CEO. "With PLX-PAD, we have the unique
opportunity to utilize a single source of cells, the placenta, to treat an
unlimited number of CLI patients. Our presentations at the ISCT Annual Meeting
and other conferences will highlight the potential of PLX-PAD as well as our
core technology that enables the cost-effective development of cell therapies
derived from the human placenta."

There are several other companies pursuing "universal
donor" stem cells. Medistem, the licensor of technologies used by Cellmedicine
has developed such a cell from the endometrium, called "Endometrial Regenerative
Cells" that are currently subject of an IND application for use in critical limb
ischemia. Athersys is using bone marrow derived universal donor stem cells for
treatment of heart failure. The most advancement in this area comes from the
company Osiris Therapeutics which also uses bone marrow derived cells to treat a
variety of conditions, although all are still in clinical trials.

In
the majority of cases universal donor cells are related directly or indirectly
to mesenchymal stem cells. These cells, originally discovered by Dr. Arnold
Caplan, express low levels of proteins that are seen by the immune system, thus
allowing them to be transplanted without matching. Additionally, they also
produce proteins that actively suppress the immune system from killing them. In
diseases associated with abnormal immunity mesenchymal stem cells have shown
promise. Cellmedicine has published on use of mesenchymal stem cells in
treatment of multiple sclerosis