Medistem Begins Phase II Clinical Trial for Heart Failure

Medistem Inc announced today treatment of 3 heart failure patients in the Non-Revascularizable IschEmic Cardiomyopathy treated with Retrograde COronary Sinus Venous DElivery of Cell TheRapy (RECOVER-ERC) trial. The trial is aimed at assessing safety and efficacy of the company’s Endometrial Regenerative Cell (ERC) stem cell product in 60 heart failure patients who have no available treatment options. The cells were discovered by Dr. Neil Riordan and the team at Medistem. The “Universal Donor” adult stem cells will be administered using a novel catheter-based retrograde administration methodology that directly implants cells in a simple, 30 minute, procedure.

“We are honored to have had the opportunity to present at the prestigious Cardiovascular Stem Cell Research Symposium, alongside companies such as Athersys, Aastrom, Pluristem, Cardio3, Cytori, and Mesoblast,” stated Thomas Ichim, CEO of Medistem. “The RECOVER-ERC trial is the first trial combining a novel stem cell, with a novel administration procedure. Today cardiac administration of stem cells is relatively invasive and can only be performed at specialized institutions, we feel the retrograde procedure will circumvent this hurdle.”

Medistem has been focusing on the endometrium because this is a unique tissue in that it undergoes approximately 500 cycles of highly vascularized tissue growth and regression within a tightly controlled manner in the lifetime of the average female. One of the first series of data describing stem cells in the endometrium came from Prianishnikov in 1978 who reported that three types of stem cells exist: estradiol-sensitive cells, estradiol- and progesterone-sensitive cells and progesterone-sensitive cells.

Interestingly, a study in 1982 demonstrated that cells in the endometrium destined to generate the decidual portion of the placenta are bone marrow derived, which prompted the speculation of a stem cell like cell in the endometrium. Further hinting at the possibility of stem cells in the endometrium were studies demonstrating expression of telomerase in endometrial tissue collected during the proliferative phase. One of the first reports of cloned stem cells from the endometrium was by Gargett’s group who identified clonogenic cells capable of generating stromal and epithelial cell colonies, however no differentiation into other tissues was reported. The phenotype of these cells was found to be CD90 positive and CD146 positive. The cells isolated by this group appear to be related to maintaining structural aspects of the endometrium but to date have not demonstrated therapeutic potential. In 2007, Meng et al, used the process of cloning rapidly proliferating adherence cells derived from menstrual blood and generated a homogenous cell population expressing CD9, CD29, CD41a, CD44, CD59, CD73, CD90, and CD105 and lacking CD14, CD34, CD45 and STRO-1 expression. Shortly after, Patel’s group reported a population of cells isolated using c-kit selection of menstrual blood mononuclear cells. The cells had a similar phenotype, proliferative capacity, and ability to be expanded for over 68 doublings without induction of karyotypic abnormalities. Interestingly both groups found expression of the pluripotency gene OCT-4 but not NANOG. More recent investigations have confirmed these initial findings. For example, Park et al demonstrated that endometrial cells are significantly more potent originating sources for dedifferentiation into inducible pluripotent cells as compared to other cell populations. Specifically, human endometrial cells displayed accelerated expression of endogenous NANOG and OCT4 during reprogramming compared with neonatal skin fibroblasts. Additionally, the reprogramming resulted in an average colony-forming iPS efficiency of 0.49 ± 0.10%, with a range from 0.31-0.66%, compared with the neonatal skin fibroblasts, resulting in an average efficiency of 0.03 ± 0.00% per transduction, with a range from 0.02-0.03%. Suggesting pluripotency within the endometrium compartment, another study demonstrated that purification of side population (eg rhodamine effluxing) cells from the endometrium results in a population of cells expressing transdifferentiation potential with a genetic signature similar to other types of somatic stem cells.

Given the possibility of ERC playing a key role in angiogenesis, Murphy et al utilized an aggressive hindlimb ischemia model combined with nerve excision in order to generate a model of limb ischemia resulting in limb loss. ERC administration was capable of reducing limb loss in all treated animals, whereas control animals suffered necrosis. In the same study, ERC were demonstrated to inhibit ongoing mixed lymphocyte reaction, stimulate production of the anti-inflammatory cytokine IL-4 and inhibit production of IFN-g and TNF-alpha. It is important to note that the animal model involved administration of human ERC into immunocompetent BALB/c mice. The relationship between angiogenesis and post myocardial infarct healing is well-known. Given previous work by Umezawa’s group demonstrating myocytic differentiation of ERC-like cells, administration of ERC into a model of post infarct cardiac injury was performed. Recovery was compared to bone marrow MSC. A superior rate of post-infarct recovery of ejection fraction, as well as reduction in fibrosis was observed with the ERC-like cells. Furthermore, it was demonstrated that the cells were capable of functionally integrating with existing cardiomyocytes and exerted effects through direct differentiation. The investigators also demonstrated in vitro generation of cardiomyocyte cells that had functional properties.

The RECOVER-ERC TRIAL that has begun will recruit 60 patients with congestive heart failure, which will be randomized into 3 groups of 20 patients each. Group 1 will receive 50 million ERC, Group 2 will receive 100 million and Group 3 will receive 200 million. Cells will be administered via catheter-based retrograde administration into the coronary sinus, a 30 minute procedure developed by Dr. Amit Patel’s Team. Each group will comprise of 15 patients receiving cells and 5 patients receiving placebo. Efficacy endpoints include ECHO and MRI analysis, which will be conducted at 6 months after treatment. The trial design is similar to the recent Mesoblast Phase II cardiac study, in order to enable comparison of efficacy.

Mechanism by Which Injured Tissue “Tells” Stem Cells to Leave Bone Marrow

Urao et al. Stem Cells. 2012 Jan 30.

In addition to the established role of bone marrow derived stem cells in producing blood cells, an interesting aspect of these stem cells is to assist/accelerate tissue healing after injury. Perhaps the most studied example of this is in the situation of myocardial infarction (heart attack), in which damaged heart muscle sends out signals to the bone marrow, which cause selective homing of bone marrow stem cells into the damaged heart tissue. This is believed to occur via activation of the transcription factor HIF-1 alpha due to lack of oxygen in the tissue. HIF-1 alpha binds to DNA and induces activation of a variety of genes that are involved in angiogenesis such as VEGF, FGF-2, and IL-20. Additionally, HIF-1 alpha stimulates production of the chemokine stromal derived factor (SDF)-1, which attracts bone marrow stem cells by binding to the CXCR4 receptor. The importance of SDF-1 in terms of bone marrow stem cell migration is exemplified in the situation of bone marrow transplantation. When a transplant is performed the bone marrow recipient is administered the donor stem cells intravenously and not intraosteolly (inside the bone). The reason for this is because the bone marrow itself constantly produces SDF-1 which attracts injected stem cells that express CXCR4.

During infarction, the concentration of SDF-1 produced by the damaged heart muscle is higher than the concentration of SDF-1 in the bone marrow, and as a result, stem cells from the bone marrow leave the bones, enter circulation, and home to the heart. Similar examples are found in the situation of stroke. In stroke patients, not only do bone marrow stem cells enter circulation after the stroke, but it has been reported that patients with higher number of stem cells in circulation actually have better outcomes.

The possibility of chemically “mobilizing” bone marrow stem cells into circulation is very attractive. On the one hand, it would be conceptually possible to augment the extent of regeneration by increasing the number of circulating stem cells, and on the other hand, it may be possible to perform “bone marrow transplantation” without the painful procedure of drilling holes through the bones of the donor. In fact, the second possibility is actually part of clinical practice. Doctors use the drug G-CSF, otherwise known as Neupogen, to cause donor migration of bone marrow stem cells into circulation, which are then harvested by leukopheresis, so that bone marrow puncture is not needed. The first possibility, the therapeutic use of bone marrow mobilization has resulted in mixed data. Some groups have demonstrated significant improvement in heart attack patients treated with G-CSF, whereas others have reported no benefit. Recently a new way of mobilizing stem cells has been approved by the FDA: a small molecule drug called Mozobil which blocks the interaction between SDF-1 and CXCR4. This drug was developed by the company Anormed and sold to Genzyme, a major Biopharmaceutical company.

In a recent paper, the role of oxidative stress was investigated in the animal model of critical limb ischemia. Critical limb ischemia is a condition in which patients experience poor circulation in the lower extremities, usually as a result of advanced peripheral artery disease. To replicate this condition in animals, the femoral artery which feeds the leg is ligated, and perfusion of the leg is measured, usually with Doppler ultrasound. In the mouse model there is a gradual recovery of blood flow as a result of spontaneous angiogenesis (new blood vessel formation). It is believed that bone marrow stem cells are involved in the formation of these new blood vessels.

While it is known that ischemia in the leg muscle is associated with recruitment of stem cells by production of SDF-1, little is known involving the changes that occur in the bone marrow as a result of ischemia in the leg.

Scientists demonstrated that after mice are subjected to hindlimb ischemia, there is a major increase in the production of free radicals in the bone marrow, specifically in the endosteal and central region of the bone marrow. Interestingly, these free radicals appear to be made by the enzyme Nox2 because mice lacking this enzyme do not have free radicals produced in the bone marrow as a result of leg ischemia. The enzyme appears to be expressed mainly in the Gr-1(+) myeloid suppressor cells that are found in the bone marrow. Free radicals were found to be associated with expression of HIF-1 alpha, implying occurrence of localized hypoxia. As can be expected, HIF-1 alpha expression was also found to associate with production of the angiogenic cytokine VEGF. It appeared that bone marrow VEGF expression was associated with expansion of bone marrow Lin(-) progenitor cell survival and expansion, leading to their mobilization into systemic circulation. It was furthermore demonstrated that ischemia of the leg increased expression of the proteolytic enzymes MT1-MMP and MMP-9 activity in the bone marrow, which did not occur in mice lacking Nox2.

The identification of NOX2 as being critical in the mobilization of bone marrow stem cells in response to ischemia suggests that antioxidants may actually modulate the extent of bone marrow stem cell mobilization. Conversely, if one believes the concept proposed, then oxidative stress (at least in a short term setting) would be beneficial towards mobilization. This is supported by studies showing that hyperbaric oxygen induces transient mobilization of bone marrow stem cells. For example Dhar et al. published (Equine peripheral blood-derived mesenchymal stem cells: Isolation, identification, trilineage differentiation and effect of hyperbaric oxygen treatment. Equine Vet J. 2012 Feb 15) that hyperbaric oxygen treatment in horses increased yield of mesenchymal stem cells collected from peripheral blood. Thom et al (Vasculogenic stem cell mobilization and wound recruitment in diabetic patients: increased cell number and intracellular regulatory protein content associated with hyperbaric oxygen therapy. Wound Repair Regen. 2011 Mar-Apr;19(2):149-61) reported 2-fold increases in hematopoietic stem cells (identified by CD34 expression) in diabetic patients who received hyperbaric oxygen. This study also demonstrated that the CD34 cells that were found in circulation contained high expression of HIF-1 alpha, implying that they may possess angiogenic activity. An interesting experiment would have been if they removed the cells and assessed in vitro angiogenic activity. Indeed it is known that in patients with diabetes the CD34 cells possess a reduced angiogenic activity. If hyperbaric oxygen stimulates this angiogenic activity, it may be a relatively non-invasive method of augmenting the “rejuvenation” potential of the patient’s own stem cells. Another interesting finding of the study was that hyperbaric oxygen was associated with an increase in nitric oxide production by platelets. Since nitric oxide can act as an anticoagulant, this may be another benefit of using hyperbaric oxygen.

One important question is the potency of the stem cell mobilization induced by hyperbaric oxygen. Specifically, while it is nice that an increase in CD34 cells is observed, what activity do these cells actually have ? An earlier study by Thom et al (Stem Cell Mobilization by Hyperbaric Oxygen. Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1378-86) demonstrated that the colony-forming ability of the mobilized cells was actually 16-20 fold higher compared to controls. Colony-forming ability is an assessment of the stem cells to generate new cells in vitro.

Thus the paper we discussed sheds some interesting light on the connection between “oxidative medicine” and stem cell biology. Obviously more studies are needed before specific medical recommendations can be made, however, given the large number of patients being treated with alternative medicine techniques such as hyperbaric oxygen, one must ask whether other treatments of this nature also affect stem cells. For example, what about ozone therapy? Or intravenous ascorbic acid?

Bone Marrow Stem Cells Significantly Improve Cardiac Mortality Rate in Heart Disease Patients

Texas Heart Institute researcher, Emerson Perin MD, PhD revealed that heart patients who were treated with bone marrow-derived adult stem cells died at a significantly lower rate that those who did not receive stem cells. Dr. Perin’s scientific findings represent yet another positive step in the ongoing fight against heart disease.

Dr. Perin is the Director of Clinical Research for Cardiovascular Medicine and Medical Director for the Stem Cell Institute at the Texas Heart Institute in Houston, Texas. Dr. Perin’s study showed that patients treated with stem cells were 90% less likes to die from an adverse cardiac event than patients who were not treated with stem cells.

“We obtained remarkable results from our study in which we injected stem cells derived from the bone marrow of a healthy donor into patients with heart failure. Heart function and exercise capacity improved in some cell-treated patients. Most importantly, cell therapy significantly reduced cardiac adverse events, including death. Three of 15 (20%) control patients died of cardiac causes, whereas only 1 of 45 (2%) cell-treated patients had a cardiac-related death. Despite the small numbers, our findings showed that cell therapy significantly improved cardiac mortality,” said Dr. Perin.

The Role of Adult Stem Cells in Angioplasty

The National Institute of Health has granted the Creighton School of Medicine $3.3 million dollars to study repairing damaged coronary arteries with adult stem cells. Such damage can occur when patients undergo coronary artery angioplasty and stenting.

A serious problem that occurs is the re-narrowing (restenosis) of coronary arteries after stent placement. Stents are used to help widen narrowed arteries. Restenosis can be reduced by using drug-eluding stents but they can also lead to deposits of blood platelets within the artery that destroy its lining. To counteract this effect, anti-platelet therapy is employed. However, upset stomach, diarhea and nausea are serious side effects that are caused by anti-platelet therapy.

Creighton researchers, Devendra Agrawal, Ph.D, Michael Del Core and William Hunter are the primary and co-investigators. Dr. Agrawal is a professor of biomedical sciences. Dr. Del Core is a cardiologist and Dr. Hunter is a pathologist.

Autologous mesenchymal stem cells will be delivered with a specialized gene into the coronary arteries of pigs. The goal of this study is to determine if adult stem cell + gene therapy is superior to drug eluting stents, which are today’s standard of care. Such a treatment could eliminate the need for stents altogether if successful.

Recent research has shown that angioplasty and stenting – commonly used to open narrowed coronary arteries – are not as effective as once thought.

The Archives of Internal Medicine published a study of 15,000 patients showing that angioplasty + stenting can cause more harm than good in certain patients. The study determined that 10% of patients had to be readmitted to a hospital within 30 days of stenting and that they were at a higher risk of death within 1 year than the other 90%.

Medistem and Licensee ERCell Receive Russian Regulatory Approval for the RECOVER-ERC Trial

The clinical trial, Non-Revascularizable IschEmic Cardiomyopathy treated with Retrograde COronary Sinus Venous DElivery of Cell TheRapy (RECOVER-ERC), is being led by Principle Investigator Dr. Leo Bockeria, Chairman of the Backulev Center http://www.bakulev.ru/en/about/director/.

The Backulev Center is Russia’s premier institute for cardiovascular surgery and cardiology. Every year the Backulev Center performs approximately 30,000 diagnostic and treatment procedures, which includes 7,000 open heart surgeries and more than 12,000 angioplasties.

The RECOVER-ERC trial will recruit 60 patients with congestive heart failure, and randomize the patients into 3 groups of 20 patients each. Group 1 will receive 50 million ERC, Group 2 will receive 100 million and Group 3 will receive 200 million. Each group will have 15 patients receiving cells and 5 patients receiving placebo. Efficacy endpoints include ECHO and MRI analysis, which will be conducted at 6 months after treatment.

“I joined Medistem and personally invested into the company because of its strong science and intellectual property position. It is this strong science that has allowed for such a rapid progression of the ERC product from discovery, to animal studies, and now to approval for initiation of efficacy finding studies,” said Dr. Vladimir Bogin, President and Chairman of Medistem, and a Yale-trained physician practicing in the USA. “As a medical doctor I see the suffering and lack of options for patients with CHF. I am proud that our team is able to offer hope.”

This is the second clinical trial that Medistem has been granted approvals for. In September 2011, the company received FDA clearance for beginning a 15 patient trial treating critical limb ischemia patients together with Dr. Michael Murphy at Indiana University.

“We are especially grateful to our Russian licensee ERCell LLC which has worked intensely with our CRO and the Backulev Center in laying down the groundwork for this approval,” said Vladimir Zaharchook, Vice President and Vice Chairman of Medistem. “To our knowledge, ERCell is the only company in Russia working on a stem cell product that can be reproducibly manufactured, frozen, and sold as a drug, not a procedure.”

“This approval is a key milestone for ERCell. Given that Russia has one of the highest incidences of heart failure per capita in the world, we are confident that we can make a difference in patients’ lives and position Russia as an international leader in cell therapy,” said Tereza Ustimova, CEO of ERCell.

About Medistem Inc.
Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company’s lead product, the endometrial regenerative cell (ERC), is a “universal donor” stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf. ERC can be purchased for scientific use through Medistem’s collaborator, General Biotechnology http://www.gnrlbiotech.com/?page=catalog_endometrial_regenerative_cells.

Cautionary Statement
This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Stem cells secrete factors that promote muscle growth after exercise

Stem cells that aid in healing disease and injury in skeletal muscle have been found inside muscles in greater numbers after exercise, according to a new animal study at the University of Illinois.

Just one exercise session increases the number of muscle-derived mesenchymal stem cells (mMSCs) in mice, according to Beckman Institute researcher Marni Boppart. Dr. Bopart is an assistant professor of kinesiology and community health at the University of Illinois.

mMSCs can differentiate (change) into many different cell types and are found throughout the body. For the first time, this study also showed that they also facilitate tissue healing indirectly.

Bopart said, “What we’ve been able to show in this paper and our current work is that mMSCs are not directly contributing to muscle growth, but do in fact secrete a variety of different factors that positively impact muscle growth.”

Bopart believes that these secreted factors, which specifically respond to mechanical strain are an important step toward treatments that can prevent muscle loss that occurs with aging.

This work was reported in the journal PlosOne.

Child’s Amazing Recovery from Cerebral Palsy Attributed to Cord Blood Stem Cells

Toddler diagnosed with cerebral palsy shows remarkable improvement


By Bob Considine
TODAYShow.com contributor

Dallas Hextell was already a miracle to parents Cynthia and Derak, after they spent three years trying to get pregnant.

But now he is looking like a medical miracle to the rest of the world.

The two-year-old son of the Sacramento, Calif., couple was diagnosed with cerebral palsy, but is now showing fewer signs of the disorder and marked improvement after an infusion of his own stem cells — made possible by the preservation of his own cord blood shortly before birth.

Derak Hextell now believes his son will be cured of the incurable malady.

“[Dallas’ doctors] said by the age of 7, there may be no signs of cerebral palsy at all,” Hextell told TODAY co-host Meredith Vieira while holding a curious Dallas on his lap. “So he’s on his way, as far as we’re concerned.”

For Cynthia Hextell, the changes in Dallas just five days after the intravenous infusion of his cord blood cells are not coincidental. “[He’s changed] almost in every way you can imagine, just from five days afterwards saying ‘mama’ and waving,” she said. “We just feel like right now he really connects with you. “It just seemed like a fog was over him before, like he just really wasn’t there. There was kind of, like a glaze in his eyes. Now, as you can see, you can’t get anything past him.”

A difficult start

The joy of Dallas’ birth in 2006 was met with gradual heartbreak as he was unable to feed from his mother. He was constantly crying and rarely opened his eyes. At five months, Dallas had trouble balancing himself and his head was often cocked to one side.
The Hextells switched pediatricians when Dallas was eight months old and was diagnosed with cerebral palsy — a group of nonprogressive disorders that affect a person’s ability to move and to maintain balance and posture.

Various studies show that the damage to the motor-control centers of the young, developing brain that causes CP occurs during pregnancy, although there are smaller percentages of the disorder occurring during childbirth and after birth through the age of 3.

“I think it’s important to remind people that cerebral palsy has to do with the motor part of the brain and usually kids don’t deteriorate,” said Dr. Nancy Snyderman, NBC News’ chief medical editor. “But they have significant motor problems, which explains why he wasn’t a good sucker when he was breast-feeding as a baby and all of this colicky stuff that sort of confused the diagnosis.”

There is no known cure for cerebral palsy, and the treatments to help manage its debilitating effects make it the second-most expensive developmental disability to manage over a person’s lifetime, behind mental disabilities.

At 18 months, Dallas had very limited motor skills. He could not crawl, clap or sit up and he communicated only through screaming brought on mostly by pain and frustration.

Life-changing decision

During her pregnancy, Cynthia Hextell had done thorough Web research on health issues relating to childbirth and came across a pop-up ad for Cord Blood Registry, the world’s largest family cord blood stem cell bank. The San Bruno, Calf.-based company has preserved cord blood stem cells for more than 200,000 newborns throughout the world.

Hextell said the cost of saving Dallas’ cord blood — about $2,000 and not covered by insurance — was off-putting. But she ultimately registered for CBR, thinking she would rather put up the money and not use it rather than have saved it and regretted it later.

(Cord Blood Registry spokesman David Zitlow said the procedure costs $2,000 for processing and $120 per year for storage.)

“We had a perfectly healthy pregnancy, but it did take us three years to get pregnant,” Cynthia Hextell told Vieira. “It was a good chance he was going to be our only child, so that was one thing that if we were going to do it, this was our only chance.

“Heart disease ran in [Derak Hextell’s] family. I was adopted, so I knew if we ever needed something, Dallas and I were the only ones [who could provide a genetic match]. So those were things [we considered], but nothing like I thought something was going to be wrong with my child. Literally, it took us until about two weeks before our due date to make the final decision because it is expensive.”

After Dallas was diagnosed, the Hextells traveled to Duke University, where doctors were using cord blood as part of a clinical trial to treat a small number of children who had cerebral palsy or brain damage. Mrs. Hextell called some of the parents of the children and all of them reported tangible improvement in their children following the transplant of stem cells, evidenced in better speech and motor skills.

So the Hextells agreed to infuse Dallas’ own stem cells back into his bloodstream last July, a procedure that took less than an hour.

Within five days, a different child emerged — laughing, clapping, waving and reacting.

“We think [the transfusion] has a real big part to do with it because it was such a drastic change within five days of the procedure taking place,” Derak Hextell said. “It had to be because he wasn’t reaching the milestones that he’s reaching now. He was falling further and further behind.”

“Before he went to Duke, we were trying to teach him to use a walker,” Cynthia Hextell said. “Now he walks with no assistance at all.”

Saving the cells

Although Dallas’ case was not part of a controlled case study, Snyderman said it should not be overlooked in the progressing studies of stem cell treatments.

“I think the thing that medicine has not done very well is we haven’t made a big enough deal about anecdotes,” she said. “This is not a controlled case study. It’s not a randomized clinical trial. But it is a child with a diagnosis who got a transfusion of stem cells and not only stopped the deterioration of his problems, [but] he’s doing better.
“So I take it very seriously. And I think it’s an extraordinary reminder that cord blood, that stuff that is thrown away with the placenta in the emergency room as sort of medical waste, can have extraordinary applications. We’re all offered it in the delivery room.”

Snyderman didn’t have to convince one person about the promise of those stem cells.

Said Cynthia Hextell: “They’re like gold.”

Umbilical cord stem cells may lead to new spinal cord injury and multiple sclerosis treatments

Researchers in Florida have accomplished converting umbilical cord stem cells into other cell types. According to University of Central Florida bioengineer James Hickman, it’s the first time that non-embryonic cells have accomplished this feat. His research group published this work in the January 18th issue of ACS Chemical Neuroscience.

Two major benefits of umbilical cord-derived stem cells are that they have not been shown to cause adverse immune system reactions and they pose no ethical issues since they come from a source that would be naturally discarded anyway.

Hedvika Davis, a post-doc researcher and lead author of the paper, had to search for the right chemical to coax the stem cells into becoming oligodendrocytes, which are cells that insulate nerves residing in the brain and spinal cord.

Other researchers had already shown that oligodendrocytes bind with a hormone called norepinephrine and Davis theorized that this could be the key. So she used norepinephrine and other growth factors to induce the cells to differentiate into oligodendrocytes. The only problem was that the cells were not sufficiently developed as they would be in the body.

So Davis devised a novel approach of approximating the body’s environment in the lab. By growing the cells on top of a slide, with another slide on top, Davis was able to simulate a 3-dimensional environment and grow mature oligodendrocytes.

Because oligodendrocytes produce myelin, researcher believe that this discovery might lead to treatments for multiple sclerosis, spinal cord injury and diabetic neuropathy.

Stem Cell Therapy For Spinal Cord Injury and A Layman’s Guide To Adipose Stem Cell Therapy – Stem Cell Institute Seminar in Gilbert, AZ

The Treatment of Human Diseases with Adult Stem Cells

 

We are proud to present and discuss the latest in adult stem cell treatments for diseases. Join us for informational presentations by:

Jorge Paz Rodriguez, MDA Layman’s Guide to Adipose Stem Cell Therapy

Neil Riordan, PhDAdult Stem Cell Therapy for Spinal Cord Injury

Patients will be on hand to discuss their experiences.

 

April 21, 2011
Saturday
12:30 pm – 4:00 pm

Legato Hotel
San Tan Elegante Conference Center
Gilbert, AZ 85296

Register at www.cellmedicine.eventbrite.com

(800) 980-STEM (7836)

clinic@cellmedicine.com

The Key to Better Health May Lie in Adult Stem Cells

One of the oldest people in the world, Sarah Knauss (119 years old), might have had more than just “good genes.” “Adult stem cells – known for their healing and regenerative properties – might hold the key to a long and healthy life,” says Wayne Marasco, MD, PhD, of Dana-Farber at the recent International Vatican Conference on Adult Stem Cells in Vatican City, Italy.

“We have learned in the past 10 years that there are all kinds of stem cells that circulate in the blood – they aren’t just found in bone marrow,” said Marasco, of Dana-Farber’s Department of Cancer Immunology and AIDS. “There are dozens of studies that support the fact that this is a large and dynamic population of cells that might help us keep our bodies healthy for a longer period of time.”

Stem cells are assigned to specialized zones in the body and called into action when the body faces stress or even a minor injury. For example, when someone has a heart attack or stroke, an agent is released into the blood, recruiting stem cells and directing them to the damaged tissue.

In addition to their healing powers, stem cell levels are also an indicator of future health. Studies have shown that a person’s level of endothelial progenitor cells, stem cells that form the tissues that line blood vessels, can predict whether or not a patient who has a heart attack will die or need major hospitalization.

Since stem cell levels can be modified through diet, lifestyle changes, or drugs, monitoring stem cells could prevent certain health risks and delay disease from occurring.

“The bottom line is that stem cells may be a better indicator of health and aging than the regular annual blood test, which was developed 50 years ago,” Marasco says. “Now that we know more about adult stem cells, this should be part of a routine test.”

Stem cell therapy may not be too far off in the future. Marasco says that doctors will soon be able to check stem cell levels in a drop of blood, using a finger-prick test much like those used by diabetics. Studies are also beginning to show the benefits of an FDA-approved molecule that improves the healing powers of stem cells, and the NIH has launched a new program that may lead to discoveries of already approved drugs that can boost adult stem cells.

“We can age gracefully, but we can also keep the body revitalized,” Marasco said. “The whole purpose of monitoring is to replenish our stem cells so that we can get more healthy years out of them.”