Stem Cell Treatment for Heart Attacks: Timing is Everything

Skeletal myoblasts are a type of muscle-specific stem cell
that have been used previously in several clinical trials, particularly for
heart failure and post-heart attack patients.  Advantages of this type of stem
cell include the fact that they are from adult sources (no risk of cancer), they
are already committed to becoming muscle cells, and they can easily be grown in
the laboratory.  Disadvantages include the possibility of arrhythmias, as well
as lack of efficacy in several systems. Additionally, unlike mesenchymal stem
cells, which can be used as "universal donors" because of their
anti-inflammatory effects, skeletal myoblasts have to either be used from the
same patient (autologous), or co-administered with immune suppression to prevent
their rejection.

In a recent publication (O’Blenes et al. Engraftment is
optimal when myoblasts are transplanted early: the role of hepatocyte growth
factor. Ann Thorac Surg. 2010 Mar;89(3):829-35
) Canadian researchers at
Dalhousie University sought to determine whether an optimum time exists for
myoblast administration after cardiac injury. 

Using rats, the scientists cut off circulation to the
coronary artery to mimic a heart attack by ligation using microsurgery. 
Myoblasts where implanted at the time of ligation or 5 weeks after the infarct. 
Much higher engraftment of the cells was observed in animals that received the
cells immediately after the infarct.  Additionally, the hearts that received
myoblasts earlier seemed to have less damage.  This prompted the scientists to
ask the question; "why would delayed administration result in less homing and
retention?"

Previously we at Cellmedicine discussed the biological
observation that after a heart attack the injured heart muscle generates
chemicals that attract the body’s own stem cells.  One of these chemicals is
VEGF, which was discussed in this video

http://www.youtube.com/watch?v=NqEggEYilh0
. Another chemical made by injured
heart tissue is hepatocyte growth factor (HGF).  Both of these proteins are made
when cells "sense" reduced oxygen, as well as various alterations in their
environment.  In the current study it was found that levels of HGF are
substantially elevated after the infarct and subsequently diminish by the 5th
week.  The investigators found that HGF stimulated proliferation and activity of
the myoblasts, and therefore believed that the decline in HGF may be one of the
reasons for the decreased efficacy with time. 

This could be a possible explanation for their results,
however, numerous factors may also be important to consider.  For example, it is
known in various situations of injury that as scar tissue forms, components of
the scar tissue inhibit regeneration.  Stem cells such as bone marrow
mesenchymal cells contain matrix metalloproteases that actively can "dig
through" scar tissue and support regeneration.  Myoblasts do not express such
enzymes, and additionally do not have the same homing ability to injured tissue.

The study would have substantially made more of a strong
case for the importance of HGF in stem cell activity if they used blocking
antibodies or knock-out mice specific for this gene.  Such a study would have
conclusively demonstrated the importance of HGF in this situation by
demonstrating less stem cell homing in its absence. 

One interesting point that is made is the possibility of
administering HGF into the myocardium of patients so as to enhance stem cell
homing.  Indeed, some companies such as Bioheart are already using such an
approach, see link

http://www.bioheartinc.com/prod-myocellsdf1.html
.

Butyrate Greatly Enhances Derivation of Human Induced Pluripotent Stem Cells by Promoting Epigenetic Remodeling and the Expression of Pluripotency-Associated Genes

Generation of inducible pluripotent stem cells (iPS) offers
the possibility of creating patient-specific stem cells with embryonic stem cell
therapeutic potential from adult sources.  Recently the main hurdle of iPS cell
generation, the need for introduction of oncogenes in the adult cells, has been
removed by use of chemical modulators as well as alternative non-cancer causing
genes.  Another drawback of creating iPS cells is the need for mass screening of
many transfected target cells before identification and extraction of the
correct cell can be made.  In the current paper the histone deacetylase
inhibitor butyrate was used to enhance potency of iPS generation in vitro. 
Histone deacetylase inhibitors are a type of compounds that decrease the density
of DNA in chromosomes.  By performing this function the DNA because more
amenable to reprogramming, in the sense that the cells can be coaxed to
de-differentiate with less effort.  Another histone deacetylase inhibitor,
valproic acid, which is used clinically to treat convulsions, has been shown to
increase the ability of blood making stem cells to self-replicate with higher
efficiency, which is a characteristic of earlier de-differentiation.    

In a recent paper it was demonstrated that temporary
treatment with butyrate increases efficacy of iPS generation by 15-51 fold using
two techniques that are commonly used for generation of these cells.  It was
demonstrated that in the presence of butyrate stimulation a remarkable (>100-200
fold) increase on reprogramming in the absence of either KLF4 or MYC transgene.

This suggests that butyrate may be a useful agent to
incorporate in the iPS generation protocols that are currently under
development.  Furthermore, butyrate treatment did not negatively affect
properties of iPS cell lines established. The generated iPS cell lines,
including those derived from an adult patient with sickle cell disease by two
methods show normal karyotypes and pluripotency.

To mechanistically identify molecular pathways of butyrate
enhancement of iPS generation, the investigators performed conducted genome-wide
gene expression and promoter DNA methylation microarrays and other epigenetic
analyses on established iPS cells and cells from intermediate stages of the
reprogramming process.

 By day 6-12 after exposing cells to butyrate, enhanced
histone 3 acetylation, promoter DNA demethylation, and the expression of
endogenous pluripotency-associated genes including DPPA2, whose over-expression
partially substitutes for butyrate stimulation is known.

According to Dr. Mali " Thus, butyrate as a cell
permeable small molecule provides a simple tool to further investigate molecular
mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an
efficient method for reprogramming various human adult somatic cells, including
those from patients that are more refractory to reprogramming
"

Methods of increasing efficacy of iPS generation have
included not only chemical manipulation but also starting from cell sources that
are generally considered more immature.  For example a previous study
demonstrated that mesenchymal stem cells create a much higher per-cell number of
iPS cells as compared to skin fibroblasts. 

One of the interesting points of this finding is that
butyrate may theoretically be useful at expanding potential of stem cells
already in an organism.  Since butyrate is used clinically for treatment of urea
cycle disorders and is non-toxic at pharmacological doses, it may be a good
candidate for expanding stem cells in vivo.  Manipulation of the stem cell
compartment by administration of therapeutic agents has already been performed
for mobilization, which has been published with the neutraceutical Stem-Kine

http://www.translational-medicine.com/content/pdf/1479-5876-7-106.pdf
.

Cord blood stem cells help meet minority marrow needs

Leukemias are cancers of the cells that give rise to white
blood cells.  For example in myeloid leukemias the cells that normally would
become the blood cells neutrophils or macrophages start to make copies of
themselves but refuse to mature.  What happens is that the body is flooding with
cells that on the one hand do not protect the patient from disease, and on the
other hand start to interfere with organ function.  In lymphocytic leukemias the
cells that give rise to lymphocytes such as T and B cells, stop maturing. 
Despite advances in our knowledge of the molecular basis for many leukemias, in
many situations the only definitive cure can be achieved through stem cell
transplantation. Traditionally this has been performed using bone marrow stem
cells from donors that are matched with recipients.  The process of
transplantation involves initial destruction of the recipient bone marrow and
leukemic cells by administration of high doses of radiation and chemotherapy. 
Subsequently donor bone marrow is given which contains high numbers of stem
cells.  These donor stem cells eventually take over the function of making blood
and the recipient is cured of leukemia but has someone else’s stem cells inside
of them.

One of the major barriers to complete success of bone
marrow transplantation is that donors must be matched very strictly.  If the
donor is not matched then the immune cells in the bone marrow start to attack
the recipient.  This is called graft versus host disease, and is one of the most
devastating side effects of bone marrow transplantation, which in some cases is
lethal.

The current story from CNN describes a personal experience
of a lady, Diana Tirpak, who could not find a bone marrow donor.  In general it
is rather difficult to find an unrelated matching donor.  In minorities the
process is even more difficult.  Tirpak, a retired school nurse in Hudson, Ohio
was so convinced that the search for a donor was futile that she helped her
husband buy a suit for her funeral.  "I was bound and determined he was going to
look fine at the funeral," she said. 

Fortunately advances in "alternative sources" of stem cells
have saved Tirpak’s life.  While it is known that stem cells reside in the bone
marrow, another source that is only in recent times being appreciated is cord
blood.  Originally cord blood transplantation was restricted to children since
the number of stem cells per cord is relatively small.  However new advances in
transplantation, as well as introduction of "two cord" approaches have opened up
this procedure for adults.

Dr. Mary Laughlin, founder and medical director of the
Cleveland Cord Blood Center stated "Cord blood is rich in stem cells and easier
to match than adult bone marrow because the immune cells are not developed.
Also, patients can get the treatment in about three weeks — as opposed to six
to eight for bone marrow from an adult donor.  That can be a critical time
interval for a patient who is in remission," she said, noting that doctors often
fear a patient’s relapse while awaiting the transplant.

To get a sense of how difficult it is to find bone marrow
donor matches, the National Bone Marrow Registry has more than 12 million donors
that meet the needs of only about 60 percent of Caucasians in the United
States.  In contrast, only 5 to 15 percent of minorities have available donors. 

Another example of the difficulties minorities face in
obtaining a suitable donor is the story of Nathan Mumford, who is
African-American and was diagnosed with leukemia shortly after finishing
college.  "We went through that process, and nobody had a match. Siblings are
the best matches. My brother or my sister wasn’t a match. My friends, aunts,
uncles, cousins, nobody was a match. So, couldn’t go that route," Mumford said. 
Luckily he too was eligible for a cord blood transplant.  "That was an
opportunity," said Mumford, who survived Hodgkin’s disease as a child. "That was
a chance for me to live. I’m not a quitter. I’ve never been a quitter, so I
wasn’t going to quit."

In November of 2004 he was treated by cord blood
transplantation.  Now his leukemia is cured and he claims he is in great shape. 
I just feel amazing," he said. "I have a lot of energy, and I’m just excited
about it."

The use of cord blood transplants among unrelated donors
have risen from 1 percent in 2001 to 24 percent last year, Dr. Laughlin says.

It should be noted that the use of cord blood for leukemias
is different than its use for other conditions that do not need destruction of
the recipient’s bone marrow.  For example in patients with heart failure there
is a need for stem cells that can either directly give rise to new heart cells,
or produce growth factors that activate stem cells in the heart.  The use of
cord blood derived stem cells for heart failure has yielded some positive
results in animal studies and in several individual case reports as seen in this
video

http://www.youtube.com/watch?v=PcFQeRNuPDo

Adult Stem Cells Healing Hearts

Adult stem cells are being more and more used in patients
to achieve effects.  In the treatment of patients with heart failure, Dr. David
Prentice, discussed two studies in which adult stem cells appear to have some
benefit. 

The first study was the result of a Brazil-Florida joint
effort in which it was discovered that adult stem cells injected directly into
the heart could relieve angina. These data are not all that surprising given
that the first use of stem cells for heart failure involved a similar injection
procedure in Japan more than a decade ago.   Stem cell administration for
cardiac conditions has been performed in numerous clinical trials, here is a
link to a video on a previously published Phase III study in patients who
previously had a heart attack

http://www.youtube.com/watch?v=flv0RmzPyLU

In the current study eight patients were received the stem
cell treatment and according to the principle investigator Dr. Nelson Americo
Hossne, Jr, all of the patients treated exhibited some degree of improvement. 
The study suggested that the patients improved through stimulation of production
of new blood vessels.  Furthermore, the authors believed that the cells and the
procedure used to administer them are safe and effective. 

Dr. Hossne stated "For our patients, angina symptom
relief began as early as three months post-procedure with continuing improvement
through the twelfth month and sustained improvement past 18 months. Symptom
relief improved in all patients, suggesting that the effect is sustained, not
transitory
."

The second study that Dr. Prentice discussed is from a
Chinese group in which the protein apelin was demonstrated to have an effect on
the ability of cardiac regenerative mechanisms.  In the study, 20 heart failure
patients were treated with their own bone marrow, 20 received placebo, and 20
healthy patients were compared for control.  All twenty of the heart failure
patients treated with adult stem cells showed significant improvement in cardiac
function within 21 days of treatment, while the standard medication patients
showed no improvement. The patients who received stem cells demonstrated a
significant increase in levels of apelin, which correlated with the recovery of
cardiac function.

Dr. Amit Patel, a world-recognized stem cell pioneer,
professor at University of Utah School of Medicine and an Editor of the journal
in which the papers were published stated: "Both studies demonstrate a
possible mechanistic approach in a clinical trial. These important findings
further enhance the understanding of the use of bone marrow derived cell therapy
for the treatment of cardiovascular disease
."

Fat May Serve a Purpose in Stem Cell Research

Scientist Dr. Joseph Wu at the Stanford University School
of Medicine has recently published a new and improved method to generate stem
cells "artificially".  For almost a decade there has been substantial
controversy regarding the use of embryonic stem cells, with the debate becoming
socially and politically focused as opposed to based on science: one camp
believing that embryonic stem cell research must be supported at all costs, the
other camp believing that adult stem cells can do anything that embryonic stem
cells can do, so there should be no research performed in this area.  This
debate became somewhat irrelevant when the Japanese group of Yamanaka discovered
a method of "dedifferentiating" adult cells into cells that appear at a
molecular and functional level similar to embryonic stem cells.  These
"artificial" stem cells, called inducible pluripotent stem cells (iPS) have
several unique properties:  They don’t need to be extracted from embryos; they
can be made from the same patient that they will be used on; and the methods of
manufacturing can be relatively standardized. 

To date these cells have been demonstrated to be capable of
generating not only every tissue in the body tested, but they also can improve
disease conditions in animal models ranging from heart attacks, to liver
failure, to bone marrow reconstitution.  Unfortunately the biggest problem with
iPS cells is that they are difficult to generate.  In order to understand this,
it is important to first mention how the cells are made.  Adult cells have the
same DNA blueprint as embryonic stem cells.  However in adult cells certain
portions of the DNA are not used to make proteins.  So in liver cells the DNA
that encodes for proteins found in the skin is "silenced" or "blocked" from
making proteins by various chemical modifications that occur as a cell is
maturing.  Embryonic stem cells are considered "blank slate" cells because the
DNA is capable of expressing every protein found in the body.  In order to make
an adult stem cell "younger" so as to resemble an embryonic stem cell, it is
necessary to somehow reprogram the DNA in order to allow it to express every
gene.  So how would one go about doing this? There is one biological condition
in which adult cells take the phenotype of younger cells.  This is in cancer. 
This is the reason why some types of cancer start expressing proteins that other
cells normally produce.  For example certain liver cancers can produce insulin,
even though liver cells do not produce insulin.  The concept that certain cancer
genes can evoke a "rejuvenation" of adult cells was used by Yamanaka as a
starting point.  His group found that if you insert the oncogene c-myc, together
with the stem cell genes Nanog, Oct-4, and SOX-2 skin cells will start to look
like embryonic stem cells.  If these cells are placed on top of feeder cells
then they can be expanded and used as a substitute for embryonic stem cells.

The current problem with wide-scale use of this approach is
that insertion of the various genes into the cells requires the use of viruses
that literally infect the cells with the foreign genes.  Not only can the
viruses cause cancer, but also the genes administered can cause cancer because
they are oncogenes.  The other hurdle is that generation of iPS cells is a very
inefficient process.  It takes approximately 2-3 months to generate stable
cells, and these cells are usually generated from approximately 1 out of
100-300,000 starting cells.  We previously discussed advances that allowed for
uses of non-hazardous means of inserting genes into cells to make iPS

https://www.celllmedicine.com/thomson-safer-ips.asp
, in this current article
another approach was described to increase efficacy.

Scientists used as starting population not skin cells,
which are considered substantially differentiated, but instead used fat derived
stem cells.  This type of stem cell is very much a mesenchymal stem cell

http://www.youtube.com/watch?v=qJN2RyBj78I
and possesses ability to
transform into different tissues already.  Thus by starting with a cell that is
already more "immature", scientists have been able to increase the rate of iPS
generation, as well as, alleviate the need for the oncogene c-myc.

Other approaches being investigated on increasing
generation of iPS cells include use of chemicals that affect the DNA structure
such as valproic acid.  This is interesting because simple administration of
valproic acid on bone marrow stem cells has been demonstrated to increase their
"stemness"

http://www.youtube.com/watch?v=3Hc4LCUOSiA
.

Although we are still far from the day when
individual-specific stem cells will be available for widespread use, we are
getting closer to this dream at a very fast pace.

Stem Cells Might Reverse Heart Damage From Chemo

One of the great findings of regenerative medicine was that organs previously believed to be incapable of healing themselves actually contain stem cells that in response to injury cause some degree of healing. The problem being that these "endogenous healing mechanisms" are usually too small to mediate effects that are visible at the clinical level. For example, the brain was considered to have very limited ability to heal itself after damage. Recent studies that have allowed for observation of brain cells after experimental strokes have led to the discovery of brain stem cells in the dendate gyrus and subventricular zones of the brain, stem cells that start to multiple after a stroke. Interestingly, various hormones such as human chonrionic gonadotropin, are capable of stimulating brain stem cell multiplication. This is currently being used in clinical trials for stroke by the company Stem Cell Therapeutics.

In the area of heart failure, it was also believed that once cardiac tissue is damaged, the only repair process that the body performs is production of scar tissue, which is pathological to the patient. While this scar tissue is found in the majority of the injured area, molecular studies have revealed the existence of cardiac specific stem cells, which start to multiply after injury and serve to repair, albeit in small amounts, the infarct area.

One way to augment endogenous repair processes is to administer stem cells from the bone marrow, which are known to produce various growth factors that assist the tissue-specific stem cell in mediating its activity. Another way is to physically extract the tissue specific stem cells, expand them outside of the body and reimplant them into the damaged area.

In a recent publication in the journal Circulation, Piero Anversa, M.D., director, Center for Regenerative Medicine, Departments of Anesthesia and Medicine and Cardiovascular Division, Brigham and Women’s Hospital, Boston and Roberto Bolli, M.D., chief, cardiology, and director, Institute of Molecular Cardiology, University of Louisville, Kentucky, describe the use of cardiac specific stem cells in treatment of animals whose hearts of been damaged by the chemotherapeutic drug doxorubicin.
Doxorubicin is a chemotherapeutic drug that is mainly used in the treatment of breast, ovarian, lung, and thyroid cancers, as well as for neuroblastoma, lymphoma and leukemia. One of the main limiting factors to increasing the dose of doxorubicin to levels that can lead to tumor eradication is that it causes damage to the heart muscle, the myocardium.

In the published study, the investigators expanded the cardiac specific stem cells from rats, gave the rats high doses of doxorubicin and in some rats injected back cardiac specific stem cells, whereas other rats received control cells. The rats that received the cardiac specific stem cells had both preservation of cardiac function, and also regeneration of the damaged heart tissue. This is an important finding since the type of damage that doxorubicin does to the heart is different from other types of heart damage that have been studies, such as the damage that occurs after a heart attack. These data seem to suggest that stem cell therapy may be useful in a variety of injury situations.

"Theoretically, patients could be rescued using their own stem cells," said study author Dr. Piero Anversa, director of the Center for Regenerative Medicine at Brigham and Women’s Hospital in Boston. Dr. Aversa is one of the original discoverers of the cardiac specific stem cell when he published experiments in dogs demonstrating multiplication of cells in the myocardium that seem to have ability to generate new tissue after damage (Linke et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8966-71).

"A Phase 1 clinical trial using a similar procedure in people is already under way", said Dr. Roberto Bolli, chief of cardiology and director of the Institute of Molecular Cardiology at the University of Louisville in Kentucky, who is heading the trial. The FDA has approved a Phase I clinical trial using cardiac specific stem cells in 30 patients who have congestive heart failure due to disseminated atherosclerosis. "In the trial, participants’ cardiac tissue will be harvested, the stem cells isolated and then expanded in vitro from about 500 cells to 1 million cells over several weeks", Bolli explained. "Several months after the patient has undergone bypass surgery, the stem cells will be re-injected." A similar clinical trial is being performed at Cedars Sinai in Los Angeles.

While the problems of tissue extraction (which is performed by an invasive procedure requiring biopsy of heart tissue) and cost of expansion are still formidable hurdles to widespread implementation, it is believed that the clinical evidence of a therapeutic response will open the door to other avenues of expanding tissue specific stem cells, such as administration of growth factors that can accomplish this without need for cell extraction outside of the body.

Stem Cell Therapy Aids the Return of Lava Man

Lava Man is a race horse that has had quite a career: he has earned more than $5.2 million and was considered one of the top racehorses in North America. Unfortunately, the recent past has not been to kind to him. Last year he finished last in the 2008 Eddie Read Handicap at Del Mar, and previous to that he has lost a series of six races in a row. Lava Man had arthritis in the joints in his ankles and a small fracture in his left front leg, Being 7 years old at that time, his owners decided it was time for Lava Man to retire.

However it seems like Lava Man’s fortunes may have changed. 17 months after his last race, he is scheduled to make a come-back this Saturday at Hollywood Park in the Native Diver Handicap. The horse was treated with his own fat derived stem cells by Dr. Doug Herthel, who stated:

"The trainer is the only one who can tell you how he’s going to run Saturday, but as far as the way he looks and based on our experience with other horses, theoretically, he should be much better than he was," said Dr. Doug Herthel, who treated Lava Man at the Alamo Pintado Equine Medical Center in Los Olivos, Calif.

"We think of those stem cells as little paramedics," Herthel said. "They go in and they help; they enhance the health of the cartilage." Dr. Herthel stated that significant improvements have occurred in Lava Man following stem cell therapy. He also stated that if Lava Man makes a triumphant return due to stem cells, this would not be the first case of this occurring. He cited the example of Ever A Friend , a 6-year-old horse, who was injured in May 2008, received the same type of fat derived stem cells as Lava Man and returned to win an allowance race and finish second in the Grade I Citation Handicap.

The fat derived stem cells that are being used in the treated of horses appear to work through several mechanisms. On the one hand they can become new cartilage and bone tissue directly, while on the other hand the stem cells producing various growth factors that accelerate the process of healing. Another method, that is more debated amongst scientists, is that the stem cells can actually produce enzymes that degrade scar tissue and allow replacement with functional tissue.

Human use of fat stem cells has been performed for multiple sclerosis (Riordan et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009 Apr 24;7:29) and is currently being investigated for other conditions such as heart failure and rheumatoid arthritis.

Cleveland Clinic receives $2.75M grant to study stem cell use in treating MS

The use of stem cells for multiple sclerosis can be categorized into two main approaches. The first involves transplantation of blood making stem cells, called hematopoietic stem cells, after the immune response of the patient is destroyed. This is performed because multiple sclerosis is an immunological disease in which the T cells are attacking the "insulator" of the nerves, a protein called myelin basic protein. By destroying the immune system and subsequently adding stem cells that will make a new immune system, this approach "resets the clock" and has yielded success in early clinical studies. Unfortunately, the problem with destroying the patient immune system is that they undergo a period of immune compromise during which they are susceptible to bacterial, fungal, and viral infections. The second method of using stem cells in multiple sclerosis is to administer a type of stem cell called mesenchymal stem cells, which actually reprogram the pathogenic T cells so that they slow down their immune attack. Mesenchymal stem cells also possess two other important properties: a) they induce the generation of T regulatory cells, which block pathologic T cells from attacking myeling&; and b) they help to regenerate the injured neurons through producing growth factors, as well as becoming new neurons.

For the study of this second approach, the Cleveland Clinic has received a $2.75 million federal grant from the Department of Defense. This is a 4-year grant that will fund a 24-patient study which will be conducted by the Center for Stem Cell and Regenerative Medicine. The study will investigate patients with relapse-remitting MS that are still able to walk but have moderate to severe disability. Collaborators in the study will include the stem cell company Athersys Inc., Case Western Reserve University, the Clinic, Ohio State University and University Hospitals Case Medical Center.

"Mesenchymal stem cells are primitive cells in the bone marrow that have a wide range of effects that decrease the activity of immune cells which are over-active in MS," said Dr. Jeffrey Cohen of the Clinic’s Mellen Center for Multiple Sclerosis Treatment and Research. "In addition, in numerous laboratory studies, MSC’s were able to migrate from the blood in to areas of inflammation or injury in the nervous system and reduce damage by developing into cells resembling neurons (nerve cells) and glia (support cells) and, probably more importantly, by creating a tissue environment that encourages intrinsic repair mechanisms," he said.

The proposed study is similar to work performed by the Cellmedicine (www.cellmedicine.com ) stem cell treatment clinic which has published on 3 patients with MS undergoing a recovery after treatment with their own fat derived stem cells, without immune suppression. This was published with collaborators at the company Medistem Inc, the University of California San Diego, Indiana University, the company Vet-Stem and the University of Utah. The publication is freely available at this link www.translational-medicine.com/content/7/1/29.

The use of fat as a source of mesenchymal stem cells for treatment of MS is appealing for several reasons. Firstly, the high content of these stem cells in the fat makes expansion of the cells unnecessary for certain uses. The process of cell expansion is technically complex and can only be performed at specialized institutions with experience in cell processing. Secondly, fat contains high concentrations of T regulatory cells, therefore in addition to administering mesenchymal stem cells, the presence of these T cells is theoretically beneficial since they are known to inhibit pathological immune responses. An explanation of the importance/relevance of T regulatory cells in fat is provided in this video:

Click play button

Other cells found in fat include endothelial progenitor cells (EPC), these are useful for healing injured tissue by creating new blood vessels, a critical part of the healing process.

Adipose Tissue-Derived Stem Cells Inhibit Neointimal Formation in a Paracrine Fashion in Rat Femoral Artery

Fat tissue is becoming increasingly recognized as a major contributor to the biochemical balance in the body. For example, during times of obesity, fat tissue produces compounds such as leptin that suppress, or attempt to suppress appetite. Fat tissue contains numerous cell types that control inflammation such as T regulatory cells, and alternatively activated macrophages (Riordan et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009 Apr 24;7:29). Additionally, fat tissue contains several populations of stem cells, including mesenchymal stem cells, and hematopoietic stem cells.

In the study published today, fat mesenchymal stem cells were isolated from rats and tested for ability to promote healing of the endothelium, which is the lining of the blood vessels. The endothelium is very important because damaged endothelium is believed to be the cause of atherosclerosis.

The first set of experiments that the scientists performed was to try to “differentiate” or transform the fat mesenchymal stem cells into endothelial cells in the test tube. Treatment of the stem cells with an optimized mix of chemicals, called “endothelial growth media” resulted in cells that resembled endothelium based on expression of proteins on the cell surface. Specifically, the “home grown” endothelial cells expressed the markers Flt-1 and responded to SDF-1, a protein known to attract endothelial cells.

In order to mimic the condition of atherosclerosis development, a wire was inserted into the femoral artery and used to “scratch” the endothelial surface so as to produce an injury. In animals that did not receive stem cells, the injury resulted in a lesion that resembled the atherosclerotic plaque. When stem cells that were differentiated into endothelial cells were administered in the injured area, the lesion size was reduced, or in some animals completely absent.

Most interesting in the study was that the differentiated endothelial cells did not incorporate themselves into the existing blood vessel endothelium. Specifically, the injected cells could have been injected even outside of the endothelium and prevention of injury would be seen. These data suggest that the endothelial cells generated in vitro seem to work by producing therapeutic factors that accelerate healing, but not necessarily by replacing the function of the old endothelium. One interesting next step of this research may be to purify the growth factors made, and administer them instead of stem cells as a therapeutic approach to prevention of atherosclerosis.

Stem Cell Therapeutics Corp. Announces Private Placement

Stem Cell Therapeutics is a biotechnology company from Calgary Canada that is developing a novel type of stem cell therapy: instead of administering stem cells, they give drugs that activate the patient’s own stem cells. The company licensed intellectual property from Dr. Samuel Wise, which covered the use of agents such as erythropoietin, human chorionic gonadotropin (hCG), parathyroid hormone, and prolactin, for stimulation of the body’s own stem cells.

The company published a paper describing their Phase I clinical trial of hCG entitled "Open labeled, uncontrolled pharmacokinetic study of single intramuscular hCG dose in healthy male volunteers" the August 2009 issue of the International Journal of Clinical Pharmacology and Therapeutics. Which assessed feasibility of administration of hCG and demonstrated it can cross the blood brain barrier by assessment of cerebral spinal fluid levels of the hormone. These data were important because it allowed the company to enter Phase II clinical trials for treatment of stroke using a combination of the red blood cell stimulating hormone erythropoietin, together with hCG.
If successful, this will be one of the very few companies that uses injectable drugs as a substitute for stem cells. This is an important paradigm shift in cell therapy since many of the current therapies require manipulation of cells outside of the body, which is expensive and currently limited to a small number of clinical trials.

The company is also working on other neurological conditions including multiple sclerosis and traumatic brain injury, both of which are in preclinical stages of development, however animal data to date has been promising. For multiple sclerosis the hormone prolactin is being used as a stem cell stimulatory drug, whereas for brain injury hCG and erythropoietin are used, in a similar model as in the current stroke trials.

Today Stem Cell Therapeutics announced that it has closed on two separate financing deals that together yielded $2,186,941 in gross proceeds. The first deal was a brokered private placement through J.F. Mackie & Company Ltd for $1,138,741, whereas the second was a non-brokered offering of $1,048,200. The company reported that proceeds will be used for general working capital purposes.