Stem-Cell Activators Switch Function, Repress Mature Cells

One of the mysteries of stem cell biology is how these cells can on the one hand make copies of themselves (called self-renewal), and depending on the needs of the body, become different cells, a process called differentiation. It is known that the process of differentiation is dependent on various chemical signals. For example, if one climbs on a mountain, the lack of oxygen stimulates cells within the kidney to make the hormone erythropoietin which increases the number of bone marrow stem cells that differentiate into red blood cells. While some of the signaling proteins are known, the effector proteins inside the stem cell that dictate its activity are still not very well understood.

In two recent back-to-back publications in the Dec 17 issue of Nature, some progress was reported in the understanding of stem-cell growth and differentiation. It was demonstrated that there exist three critical proteins which first stimulate stem cells to proliferate. Then, as the cells differentiate into their final cell type, these proteins switch function and arrest the cells from dividing any more. Because of their central role, the proteins could offer a safe and novel therapeutic target in many cancers. The proteins that arrest the multiplication of the cell may be considered as "tumor suppressor" proteins.

The published study, which was led by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, demonstrated that three proteins, called E2f1, E2f2 and E2f3, play a fundamental role in the differentiation steps that stem cells undergo as they lose their self-renewal activity. One of the interesting findings of the studies was the importance of the Rb tumor suppressor protein in blocking self-renewal of stem cells that are differentiating.

"We show that these E2fs are gene activators in stem cells but then switch to gene repressors when stem cells begin differentiating," says Gustavo Leone, associate professor of molecular virology, immunology and medical genetics at Ohio State’s James Cancer Hospital and Solove Research Institute. Leone headed the first of the two Nature studies and is a co-author on the second.

"This is a very important step in the process of differentiation," Leone says. "As organs form during development, there comes a time when their growth must stop because an organ needs only a certain number of cells and no more. The switch by these proteins from activators to repressors is essential for that to happen. Before this, there was no suspicion that these regulatory proteins had any role in differentiated cells," says Leone. "It was thought they were important only in proliferating cells like stem cells. But that’s not true."

Another interesting finding was that the E2f1, E2f2 and E2f3 proteins, while being inhibited in differentiated cells, can actually be re-activated in the presence of mutated tumor suppressor genes and lead to unrestricted cell growth. This provides another method of generating cancer cells in vitro for testing.

Effort to Regenerate Injured Spinal Cords Turns to a New Model

The salamander has incredible regenerative ability. In addition to ability to grow back severed limbs, salamanders have profound plasticity of neurons and can regrow severed nerve endings at a much higher efficiency than mammals. Given that we live in an age where every gene of the body is known (genomics), almost every major protein is sequenced (proteomics), and more recently the majority of small molecules have been elucidated (metabolomics), one of the major pushes in research is to use this knowledge to understand old mysteries such as the regenerative ability of salamanders.

A multi-institutional scientific team in cooperation with the University of Florida McKnight Brain Institute’s Regeneration Project received a $2.4 million National Institutes of Health Grand Opportunity grant to study regenerative process of the Mexican axolotl salamander with the aim of applying biological lessons learned to spinal cord injury.

Dr. Edward Scott principal investigator for the collaborative grant and director of the McKnight Brain Institute’s Program in Stem Cell Biology and Regenerative Medicine stated "The axolotl is the champion of vertebrate regeneration, with the ability to replace whole limbs and even parts of its central nervous system. These salamanders use many of the same body systems and genes that we do, but they have superior ability to regenerate after major injuries. We think that studying them will tell us a lot about a patient’s natural regenerative capacities after spinal cord injury and nerve cell damage."

Discoveries in other species have been a critical part of biomedical research. For example, the process of RNA interference, which won the Noble Prize in Medicine for 2006 was actually discovered as a phenomena in Petunia Flowers. The toll-like receptors, which revolutionized medical knowledge of how the immune system works were originally identified in fruit flies. The current project seeks to find molecules associated with regeneration and to attempt to replicate them first in animals and subsequently in humans.

The multidisciplinary "Regeneration Project" team is also supported by private foundations such as the Thomas H. Maren Foundation and the Jon L. and Beverly A. Thompson Research Endowment, the UF Office of the Vice President for Research, and an anonymous donor.

Stem Cell Therapy Aids the Return of Lava Man

Lava Man is a race horse that has had quite a career: he has earned more than $5.2 million and was considered one of the top racehorses in North America. Unfortunately, the recent past has not been to kind to him. Last year he finished last in the 2008 Eddie Read Handicap at Del Mar, and previous to that he has lost a series of six races in a row. Lava Man had arthritis in the joints in his ankles and a small fracture in his left front leg, Being 7 years old at that time, his owners decided it was time for Lava Man to retire.

However it seems like Lava Man’s fortunes may have changed. 17 months after his last race, he is scheduled to make a come-back this Saturday at Hollywood Park in the Native Diver Handicap. The horse was treated with his own fat derived stem cells by Dr. Doug Herthel, who stated:

"The trainer is the only one who can tell you how he’s going to run Saturday, but as far as the way he looks and based on our experience with other horses, theoretically, he should be much better than he was," said Dr. Doug Herthel, who treated Lava Man at the Alamo Pintado Equine Medical Center in Los Olivos, Calif.

"We think of those stem cells as little paramedics," Herthel said. "They go in and they help; they enhance the health of the cartilage." Dr. Herthel stated that significant improvements have occurred in Lava Man following stem cell therapy. He also stated that if Lava Man makes a triumphant return due to stem cells, this would not be the first case of this occurring. He cited the example of Ever A Friend , a 6-year-old horse, who was injured in May 2008, received the same type of fat derived stem cells as Lava Man and returned to win an allowance race and finish second in the Grade I Citation Handicap.

The fat derived stem cells that are being used in the treated of horses appear to work through several mechanisms. On the one hand they can become new cartilage and bone tissue directly, while on the other hand the stem cells producing various growth factors that accelerate the process of healing. Another method, that is more debated amongst scientists, is that the stem cells can actually produce enzymes that degrade scar tissue and allow replacement with functional tissue.

Human use of fat stem cells has been performed for multiple sclerosis (Riordan et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009 Apr 24;7:29) and is currently being investigated for other conditions such as heart failure and rheumatoid arthritis.

TaiGen Biotechnology Reports Phase I and Preclinical Data for TG-0054 at the 2009 American Society of Hematology Meeting

Subsequent to the success of Mozobil, a small molecule chemical antagonist of CXCR4, several companies have been working at increasing the number of available means of mobilizing patient stem cells. One recent example is TaiGen Biotechnology Co., Ltd, which announced today the presentation of Phase I and preclinical data its CXCR4 antagonist TG-0054, at the ASH Annual Meeting held in New Orleans, the US, from December 5 to 8, 2009.

Date will be presented from a randomized, double-blind, placebo-controlled, sequential ascending single intravenous dose Phase I study. According to the press release, "TG-0054 exhibited excellent and favorable safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) profile."

The study was critical because it establishes a maximally tolerated dose that can be used for efficacy-finding Phase II clinical trials. One such trial, "A Phase II, Randomized, Open-Label, Multi-Center Study to Evaluate the Safety, Pharmacokinetics, and Hematopoietic Stem Cell Mobilization of TG-0054 in Patients with Multiple Myeloma, Non-Hodgkin Lymphoma or Hodgkin Disease" will begin to enroll patients in December, 2009.

Quite interestingly, the data presented will included details of the mechanism of mobilization, as well as the surprising finding that not only were hematopoietic (blood making) stem cells mobilized into circulation, but also stem cells for the blood vessels, called "circulating endothelial progenitor cells (EPC)."
The ability of TG-0054 to cause mobilization of EPC may support its use in other areas besides hematology. For example, it is known that patients with ischemic heart disease have low circulating EPC. By increasing the number of EPC, the body may be able to grow new blood vessels around the areas of ischemia, and thus inhibit progression, or even reverse the lack of oxygen to the myocardium.

To date, the classically used stem cell mobilizer, G-CSF, has been administered in patients with heart failure for increasing blood vessel production, as well as stimulation of endogenous regenerative mechanisms. Clinical trial results have been mixed, which may be due to other underlying factors associated with cardiac degeneration. By having an arsenal of several stem cell mobilizers, each having unique properties, future studies may be able to create a treatment protocol in which the patient is given drugs that activate stem cells, and the stem cells then home to the area where the body needs them.

Brain tumor radiation resistance defeated

One of the biggest challenges to the treatment of cancer is overcoming the ability of cancer cells to become resistant to drugs or radiation. The problem of resistance is particularly relevant in brain cancers called gliomas. Research published in the Journal Stem Cells reports one method of overcoming this problem.

Scientists at Duke University and the Cleveland Clinic claim to have identified molecules associated with the ability of certain cells within a glioma, called tumor stem cells, to resist radiation. Specifically, they have identified a protein called "Notch", which is normally involved in embryonic development, that seems to be selectively found in resistant cells. Using genetic engineering methods they have made cells that were previously sensitive to radiation to become resistant by inducing expression of Notch.

Dr. Jialiang Wang of Duke University, who is the lead author of the study. said the finding marked the first report that Notch signaling in tumor tissue is related to the failure of radiation treatments.

"This makes the Notch pathway an attractive drug target," Wang said. "The right drug may be able to stop the real bad guys, the glioma stem cells."
The authors have also demonstrated that by inhibiting activity of the Notch protein, through administration of chemicals known as gamma-secretase inhibitors, can result in making resistant cells sensitive to radiation.

These findings are interesting in light of another very recent publication (Zhen et al. Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett. 2009 Dec 3) in which the anti-leukemic drug Arsenic Trioxide was also demonstrated to alter glioma stem cells through manipulation of the Notch pathway. Notch has been found in numerous other types of tumor stem cells such as breast, colon, lung, and prostate cancer. The expression of a protein in cancer cells that is supposed to be only expressed during embryonic development supports the theory that during formation of cancer, mature cells tend to revert to an embryonic-like phenotype. This is also exemplified by the fact that adding cancer genes (oncogenes) in combination with some specific proteins can take an adult skin cell and transform it into a cell that resembles the embryonic stem cell, called an "iPS" cell. This is described in the following video:

Click play button

Sickle-cell disease can be cured with stem-cell transplant procedure

Sickle cell anemia is a genetic disorder that affects approximately 80,000 Americans, primarily of African-American origin. It is characterized by defective production of red blood cells which makes them extremely fragile and not capable of fully transporting oxygen.

In the December 10th issue of the New England Journal of Medicine a report describing a clinical trial performed at the Clinical Center of the National Institutes of Health in Bethesda, was published that described successful treatment of 9 out of 10 adults suffering from this condition.

"This trial represents a major milestone in developing a therapy aimed at curing sickle cell disease," said NIDDK Director Griffin P. Rodgers M.D. "Our modified transplant regimen changes the equation for treating adult patients with severe disease in a safer, more effective way."

The use of stem cell transplantation for genetic conditions is now becoming increasingly commonplace. For example, cord blood stem cells have been used to treat conditions such as Krabbe Disease, which is a lethal metabolic abnormality. The reason that the current study is so important was that it used a type of "conditioning regimen" that was substantially less toxic than previously performed.

In an older study about 200 children with severe sickle cell disease were cured with bone marrow transplants after receiving high doses of chemotherapy. That protocol was too toxic for adults, whose organs are damaged from the prolonged exposure to abnormal red blood cells and their breakdown products. The current treatment method is applicable to adults.

Stem cell transplantation for conditions like leukemias require the recipient bone marrow to be destroyed prior to administration of the new stem cells. In conditions such as sickle cell, one does not need to completely destroy the recipient bone marrow but merely to replace it with enough healthy stem cells so as to produce sufficient quantities of healthy red blood cells. Although this has theoretically been discussed in sickle cell anemia, to date, the current study is the first one to actually demonstrate this. It is anticipated that future studies of this sort will be conducted to attempt treatment of other metabolic abnormalities.

Stem Cell Derived Neurons for Research Relevant to Alzheimer’s and Niemann-Pick Type C Diseases

One of the major hurdles to curing diseases is finding ways in which to test potential cures (or treatments) without having to use people, or even animals. One way of trying to cure a disease is to associate it with a gene or series of genes that are either mutated or abnormally acting. When the cause of the disease is known, then scientists use computers to generate molecules that theoretically would inhibit the disease. These are then tested in the test-tube, and subsequently in animals having the disease. If it works on animals and is relatively non-toxic, then Phase I human trials are conducted to assess safety and what dosage can be tolerated.

Subsequently Phase II trials are performed to assess whether there is an effect of the drug on the disease. Finally Phase III trials are conducted, which assess the efficacy of the drug but in a manner that is double blind and placebo controlled. If the drug is successful, then the FDA or EMEA (in Europe) grants approval. The other way to approach diseases is to randomly screen compounds. The issue with random screening is that one needs to have a replica of the disease in a test tube that can be rapidly assessed whether there is or is not an effect.

The contributive role of stem cells in human medicine has to some extent been underestimated. For example, while it is well-known that embryonic stem cells have not been used in humans to date, embryonic stem cells have contributed tremendously to human medicine. Mouse embryonic stem cells are the key to development of genetically engineered animals in which a gene of interest to humans is either made to be artificially highly expressed in the animal (called transgenic animals), or in which the animal is selectively depleted of the gene of interest (called knockout animals). The development of genetically engineered animals for human testing was the basis of identifying numerous "Achilles Heal’s" of diseases. For example, using knockout mice it was demonstrated that the molecule TNF-alpha is essential for animals to get rheumatoid arthritis. The development of antibodies to TNF-alpha has heralded a revolution in the therapeutic of not only rheumatoid arthritis but also several other inflammatory diseases such as Crohn’s Disease and Psoriasis.

Today the group of Lawrence B. Goldstein, Ph.D., of the University of California, San Diego, School of Medicine and Howard Hughes Medical Institute (HHMI) presented data at the American Society for Cell Biology (ASCB) 49th Annual Meeting, in San Diego describing a new "model" of disease that they developed. The scientists wanted to develop means of testing drugs against the neurological disorders Alzheimer’s disease (AD) and the rarer but always fatal disease, Niemann-Pick Type C (NPC).

In order to do this, the investigators needed to obtain the cells that develop the disease, specific types of neurons, from individuals with the disease. The problem with this approach is that it is in general very difficult to extract neurons, and it is even more difficult to grow them from patients with AD or NPC. To overcome this, stem cells were created from the skin of patients with these diseases and then the stem cells were made into disease-specific neurons by treatment with growth factors. Previous to this, researchers had to perform experiments in neurons from fruitflies which obviously have many differences as compared to humans.

According to Dr. Goldstein, who is a professor in the Department of Cellular & Molecular Medicine, an HHMI investigator and director of UC San Diego’s Stem Cell Program "Such research may yield an understanding of what components of sporadic disease are defined by genetic characteristics"

Studies are currently being performed using these "in vitro" models of disease to assess random chemical compounds, a process called "screening" in order to identify potential drugs that may be useful in these conditions.

Human Umbilical Stem Cells Cleared Mice’s Cloudy Eyes

The cornea is front part of the eye that is transparent and allows light to enter. The cornea is does not have a blood supply and receives its nutrients from diffusion and oxygen directly from the air. Corneal scarring is a major cause of vision loss and blindness. Today researchers at the University of Cincinnati reported a new method of reducing corneal scarring using stem cells in mice.

Mice that suffer from corneal scarring are used for assessment of possible new treatments for this condition. The researchers conducting the study, lead by Winston Whei-Yang Kao, PhD, professor of ophthalmology, at the University of Cincinnati, used a mouse that was genetically engineered to lack a protein called lumican, which is involved in maintaining a clear cornea.

At the 49th Annual Meeting of the American Society of Cell Biology in San Diego today, the researchers presented data indicating that treatment of the lumican deficient mice with stem cells derived from human umbilical cords leads to preservation of vision. The specific type of stem cells used were called mesenchymal stem cells. These cells have been previously demonstrated to be capable of becoming a variety of other tissues when exposed to specific chemicals.

Although corneal transplantation is a relatively established procedure that has saved the vision of many, researchers believe that the use of umbilical cord blood stem cells in this area still has significant potential. "Corneal transplantation is currently the only true cure for restoration of eyesight that may have been lost due to corneal scarring caused by infection, mechanical and chemical wounds and congenital defects of genetic mutations," Kao says. "However, the number of donated corneas suitable for transplantation is decreasing as the number of individuals receiving refractive surgeries, like LASIK, increases."

Dr. Kao also commented on the potential treatment applications possible with the umbilical cord stem cells. "Our results suggest a potential treatment regimen for congenital and/or acquired corneal diseases," he says, adding that the availability of human umbilical stem cells is almost unlimited. These stem cells are easy to isolate and can be recovered quickly from storage when treating patients. "These findings have the potential to create new and better treatments — and an improved quality of life — for patients with vision loss due to corneal injury."

Mesenchymal stem cells have already been demonstrated safe in clinical trials, however, to date efficacy studies are still underway for a variety of conditions. The data presented today suggests how many new possible uses of stem cells exist, and the almost limitless possibilities in the area of regenerative medicine.

Stem cells may hold the key to the fight against HIV

Substantial progress has been made in the area of stem cells. Despite the Bush Administration’s 8 1/2 year ban on federal funding for embryonic stem cell research, and President Obama’s recent reversal, adult stem cell therapies have been making progress in terms of clinical implementation. This may be related to the safety concerns of embryonic stem cells, which have included differentiation into undesired tissues, as well as cancer. In contrast, adult stem cells have been used for more than 4 decades in the area of bone marrow transplantation and for over a decade in other areas. Primarily, non-bone marrow transplant studies have been focused in the area of heart failure, however smaller studies have investigated the use of stem cells in liver and kidney failure.

The field of stem cell therapies has recently been expanded. In a study published December 7in the medical journalPloS ONE, scientists from the University of California Los Angeles reported that human blood cells derived from adult stem cells can be engineered into cells that can target and kill HIV-infected cells – a process that could potentially be used against a range of chronic viral diseases.

The leader of the study, Dr. Scott G. Kitchen, Assistant Professor of Medicine in the Division of Hematology and Oncology at the David Geffen School of Medicine at UCLA and a Member of the UCLA AIDS Institute stated "We have demonstrated in this proof-of-principle study that this type of approach can be used to engineer the human immune system, particularly the T-cell response, to specifically target HIV-infected cells," Additionally, he commented on the possibility of future studies. "These studies lay the foundation for further therapeutic development that involves restoring damaged or defective immune responses toward a variety of viruses that cause chronic disease, or even different types of tumors."

Possible methods of manipulating blood cells to make them resistant to HIV infection includes genetically altering proteins called receptors. T cells have a specific receptor called CXCR5 which when mutated cannot be infected with HIV. Certain subsets of the human population who are resistant to HIV have this mutation in CXCR5, but also have normal T cell activities. One of the possible genetic alterations that can be performed in patients with HIV is to induce a similar CXCR5 mutation to endow resistance. Stem cell types that could be used include bone marrow, cord blood, or expanded peripheral blood stem cells.

Cleveland Clinic receives $2.75M grant to study stem cell use in treating MS

The use of stem cells for multiple sclerosis can be categorized into two main approaches. The first involves transplantation of blood making stem cells, called hematopoietic stem cells, after the immune response of the patient is destroyed. This is performed because multiple sclerosis is an immunological disease in which the T cells are attacking the "insulator" of the nerves, a protein called myelin basic protein. By destroying the immune system and subsequently adding stem cells that will make a new immune system, this approach "resets the clock" and has yielded success in early clinical studies. Unfortunately, the problem with destroying the patient immune system is that they undergo a period of immune compromise during which they are susceptible to bacterial, fungal, and viral infections. The second method of using stem cells in multiple sclerosis is to administer a type of stem cell called mesenchymal stem cells, which actually reprogram the pathogenic T cells so that they slow down their immune attack. Mesenchymal stem cells also possess two other important properties: a) they induce the generation of T regulatory cells, which block pathologic T cells from attacking myeling&; and b) they help to regenerate the injured neurons through producing growth factors, as well as becoming new neurons.

For the study of this second approach, the Cleveland Clinic has received a $2.75 million federal grant from the Department of Defense. This is a 4-year grant that will fund a 24-patient study which will be conducted by the Center for Stem Cell and Regenerative Medicine. The study will investigate patients with relapse-remitting MS that are still able to walk but have moderate to severe disability. Collaborators in the study will include the stem cell company Athersys Inc., Case Western Reserve University, the Clinic, Ohio State University and University Hospitals Case Medical Center.

"Mesenchymal stem cells are primitive cells in the bone marrow that have a wide range of effects that decrease the activity of immune cells which are over-active in MS," said Dr. Jeffrey Cohen of the Clinic’s Mellen Center for Multiple Sclerosis Treatment and Research. "In addition, in numerous laboratory studies, MSC’s were able to migrate from the blood in to areas of inflammation or injury in the nervous system and reduce damage by developing into cells resembling neurons (nerve cells) and glia (support cells) and, probably more importantly, by creating a tissue environment that encourages intrinsic repair mechanisms," he said.

The proposed study is similar to work performed by the Cellmedicine (www.cellmedicine.com ) stem cell treatment clinic which has published on 3 patients with MS undergoing a recovery after treatment with their own fat derived stem cells, without immune suppression. This was published with collaborators at the company Medistem Inc, the University of California San Diego, Indiana University, the company Vet-Stem and the University of Utah. The publication is freely available at this link www.translational-medicine.com/content/7/1/29.

The use of fat as a source of mesenchymal stem cells for treatment of MS is appealing for several reasons. Firstly, the high content of these stem cells in the fat makes expansion of the cells unnecessary for certain uses. The process of cell expansion is technically complex and can only be performed at specialized institutions with experience in cell processing. Secondly, fat contains high concentrations of T regulatory cells, therefore in addition to administering mesenchymal stem cells, the presence of these T cells is theoretically beneficial since they are known to inhibit pathological immune responses. An explanation of the importance/relevance of T regulatory cells in fat is provided in this video:

Click play button

Other cells found in fat include endothelial progenitor cells (EPC), these are useful for healing injured tissue by creating new blood vessels, a critical part of the healing process.