Scientists get closer to making safe patient-specific stem cells

In a study that appeared today in the Journal Cell Stem Cell, Dr Kevin Eggan’s group from Harvard reported a novel way of generating stem cells from adult cells. The procedure of generating stem cells from skin cells and other adult cells was originally reported by a Japanese group that demonstrated introduction of 4 genes into adult tissue resulted in cells that resembled embryonic stem cells. We made a video describing this procedure http://www.youtube.com/watch?v=_RLlUdJLy74 . Essentially, the genes act on the DNA to “reprogram” it, causing the adult cells to be capable of becoming different tissues in a similar manner in which an embryonic stem cell can become different tissues. This was a great breakthrough for two reasons: Firstly it opens the door to performing stem cell therapy using the patient’s own cells; and secondly, the very fact that an adult cell can be made back into a younger cell demonstrates that it is possible, at least at a cellular level, to reverse aging.

Unfortunately the genes used to “retrodifferentiate” adult cells and make these stem cells, which are called “inducible pluripotent stem cells” (iPS), are also involved in formation of cancer. So besides the fact that iPS cells themselves cause cancers because they are similar to embryonic stem cells, the very methodology used for creating iPS cells involves introduction of cancer causing genes into the cells. This of course would make it very difficult to perform clinical trials because of the risk for cancer. The other main problem with this iPS approach is that in order to get the genes into the adult cells, the genes had to be transported by viruses. Giving genes by viruses into cells has several potential problems, including the possibility of contaminating the patient.

Several research groups have tried to circumvent the problems with the current technology. For example, one approach was to use the antiepileptic medication valproic acid in combination with only 2 of the genes. In a publication last year (Huangfu et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008 Nov;26(11):1269-75) skin cells were made into iPS by administration of valproic acid with the genes Sox-2 and Oct-4. These two genes do not cause cancer. The reason why this strategy seemed to work was because valproic acid, in addition to having neurological effects, seems to modify the DNA of adult cells. DNA in adult cells is usually very compact. In the embryonic stem cell the DNA is more spreadout, and also is like a blank slate. As embryonic stem cells develop into liver cells, for example, certain parts of the DNA become “silenced” either because they are modified by chemicals that adult cells make, or because the DNA is more compacted in certain areas. Valproic acid has the ability to “loosen up” the DNA in adult cells and thereby allow them to act more like embryonic stem cells.

The use of chemicals like valproic acid for modifying stem cells is a very exciting area with practical consequences. For example, after a heart attack there are stem cells that reside in the cardiac muscle that try to heal the injured tissue. Valproic acid, by its ability to reprogram stem cells, albeit at a low level, actually seems to increase the ability of the heart to heal itself after injury, at least in animal models (Lee et al. Inhibition of Histone Deacetylase on Ventricular Remodeling in Infarcted Rats. Am J Physiol Heart Circ Physiol. 2007 Mar 30).

Another practical application of valproic acid’s ability to modulate stem cells is its potential use in the area of bone marrow transplantation. In patients with leukemias one of the commonly used procedures is autologous transplantation. This means taking out the patient’s bone marrow stem cells, the cells that make blood, giving the patient a very high dose of chemotherapy and radiation to kill the leukemic cells, and then giving back the patient’s own stem cells after they have been “cleaned up” so that they don’t have any more contaminating cells. One of the issues with this procedure is that sometimes there is not enough bone marrow stem cells to keep giving them back if the patient needs more. So for example, after the stem cells are administered, if the blood counts are too low, it would be ideal to have the patient’s own stem cells stored so that more can be given. Unfortunately it has been very difficult to expand stem cells outside of the body. In a recent publication, (Seet et al Valproic acid enhances the engraftability of human umbilical cord blood hematopoietic stem cells expanded under serum-free conditions. Eur J Haematol. 2009 Feb;82(2):124-32.) it was demonstrated that treatment of umbilical cord blood stem cells with valproic acid outside of the body led to increased expansion and ability to make the different types of blood cells needed after chemotherapy/radiation therapy. We actually made a video about an older paper in which valproic acid was used to expand bone marrow derived stem cells http://www.youtube.com/watch?v=3Hc4LCUOSiA

So based on the above two examples of chemical agents that modify “stemness” of cells, it is obvious that if newer methods were developed to make old cells young using chemical compounds instead of genes administered by viruses, these methods would have many potential applications and benefits. In the paper by Eggan, a new compound called RepSox was demonstrated to have ability of to take away the need for two of the genes when making iPS cells. With RepSox the investigators only needed to administer the genes Oct-4 and KLF, thus taking away the need for the cancer causing gene c-myc, and Sox-2.

It will be interesting to see if this new compound RepSox has similar activity to valproic acid, or to other compounds that have been demonstrated to activate patient’s own stem cells such as lithium, G-CSF, or the food supplement StemKine.

Breakthrough UW study may lead to cure for blindness in the future

Scientists at the University of Wisconsin-Madison announced today that they have succeeded in generating retinal cells from stem cells. The retina is the light-sensitive portion of the eye that is responsible for seeing. Many types of blindness are caused by the cells in the retina not functioning properly. For example, in the disease wet macular degeneration, blood vessels start growing over the retina and induce death of the neurons that transmit light. Another conditions causing retinal damage include diabetic retinopathy and long term glaucoma. While treatmetns exist that slow down progression of conditions that cause retinal damage, to date, no treatments exist that reverse damage once it has occurred.

Dr. David Gamm was the head of the research group that successfully created retinal cells outside of the body, is a member of the Ophthalmology and Visual Sciences Department, and of the UW Eye Research Institute. He used a new type of stem cell called inducible pluripotent stem cells (iPS) as the starting material for the experiments. These iPS cells are stem cells created from the skin. By introducing certain pieces of DNA into skin cells, the cells literally “become younger” and take the characteristics of stem cells. These “artificial” stem cells have been previously used for generating a variety of tissues in the test tube and even in some animal experiments. For example, iPS cells have been previously made into pancreatic islets that produce insulin (Zhang et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009 Apr;19(4):429-38) and could one day be used in the treatment of diabetes. The advantage of iPS cells is that they can be made from the same individual for which they will be used. In other words people are able to use their own cells as stem cells.
Unfortunately, the disadvantage of iPS cells is that they are very similar to embryonic stem cells. While obviously they do not have the ethical concerns associated with embryonic stem cells, since they come from the skin, iPS cells cause cancer. There is a specific type of cancer, called a teratoma, that forms when embryonic stem cells or iPS cells are injected into animals. One of the reasons for this type of cancer is because the cells are very primitive and do not know how to interact with the body around them. To date there as been one approval by the FDA for an embryonic stem cell based clinical trial by the Menlo Park company Geron Inc, but that approval was withdrawn due to concerns about some of the animal safety data without any patients being treated.

For generating treatments based on either iPS or embryonic stem cells, it will be essential to make sure that the cells are made to mature in the test tube before implantation into humans. To date, this has been one of the major stumbling blocks.

The discovery of making retina from iPS cells is, however, a major finding. One reason is that by being able to make retina cells in large quantities, the possibility of using these cells to screen for drugs that may protect them from damage or death emerges.

Retinal-like cells have been previously made from other stem cells, including from bone marrow (Wang et al. Transplantation of quantum dot-labelled bone marrow-derived stem cells into the vitreous of mice with laser-induced retinal injury: Survival, integration and differentiation. Vision Res. 2009 Sep 25) and cord blood (Koike-Kiriyama et al. Human cord blood cells can differentiate into retinal nerve cells. Acta Neurobiol Exp (Wars). 2007;67(4):359-65) stem cells, which do not have the problems of cancer formation associated with embryonic or iPS cells.

Fat-Derived Adult Stem Cells Targeted for Heart Disease Therapy

Once again, adult stem cells derived from adipose (fat) tissue are in the news for the therapeutic promise that they offer in the treatment of a number of diseases, especially heart disease.

Dr. Stuart Williams of the University of Louisville and the Cardiovascular Innovation Institute in Kentucky is currently in the process of designing a clinical trial, which he anticipates will commence within 9 months, in which adipose-derived adult stem cells will be tested in the treatment of patients with heart failure. He then realistically believes that an adipose-based adult stem cell therapy will be widely available in the U.S. within 3 to 5 years.

A number of studies have already been completed in which adipose-derived adult stem cells have been tested as a therapy for heart failure, with extremely positive results. Current similar studies are also in the process of being repeated on cardiac patients in Spain.

According to Dr. Keith March, director of the Vascular and Cardiac Center for Adult Stem Cell Therapy at Indiana University, "These sorts of cells are extremely readily available and abundant, and their normal function is tissue repair." As Dr. Williams half-jokinglly adds, "God made love handles for a reason."

Dr. Williams, a recognized pioneer in the field of adipose-derived adult stem cells, was originally inspired to investigate fat cells years ago when he met Dr. Martin Rodbell, a biochemist at NIH (the National Institutes of Health) who had won the Nobel Prize in Physiology or Medicine in 1994. Dr. Rodbell’s research interest at that time had focused on adipose cells from rats, especially those cells that floated to the tops of the test tubes. Dr. Williams, on the other hand, became curious about the denser fat cells that sunk to the bottom, and began to investigate their properties. Willliams was later awarded a U.S. patent for developing a method by which stem cells are isolated from adipose tissue – the same method that is employed today by research specialists in laboratories around the world.

The International Federation for Adipose Therapeutics and Science (IFATS) has estimated that there are approximately 300 scientists in the U.S. today who are studying adipose-derived stem cells, with approximately 10 laboratories that are exclusively focused on the topic.

Although adipose-derived adult stem cells have proven to be highly potent, capable of differentiating into a wide variety of tissue types, a few safety questions still remain unanswered. According to Dr. Yong-Jian Geng, for example, director of cardiac research at the Texas Heart Institute, "The main concern is we don’t want to develop fat tissue in the heart."

Whatever discoveries might ultimately be made regarding the clinical viability of adipose-derived stem cells, the ongoing research and clinical trials are an important part of that discovery process. As Dr. Williams further explains, "It’s like space travel. You do it because it’s there. You do it because it’s science and it’s the unknown."

Leading U.S. and S. Korean Stem Cell Companies Announce Merger

The U.S. company Stem Cell Therapy International Inc. (SCII) announced today a reorganization and stock purchase agreement with S. Korea’s leading stem cell company, Histostem. The agreement marks the first step in the completion of a merger between the two companies.

Following a finalization of the agreement, the U.S. operations of Histostem will be managed by AmStem International, a wholly owned subsidiary of SCII.

As reported in initial filings with the S.E.C. (Securities and Exchange Commission), SCII will acquire 90% of the issued and outstanding shares of Histostem in consideration for the issuance of 72.5 million shares of Histostem stock.

According to David Stark, president and CEO of SCII, the company is in the process of securing supply channels in order to strengthen cash flow, which include a worldwide distribution of already existing stem cell facial cream and cosmetics products.

As stated in the press release, "Additional revenue is expected from the development of proprietary technologies from Dr. Han Hoon, CEO of Histostem, who will be working together with AmStemm to bring new products to the U.S. and E.U. markets."

This merger announcement was not unexpected but in fact was a required condition of a litigation settlement to which both companies had previously agreed and which had been announced on September 10th of this year. (Please see the related news article on this website, entitled, "U.S. and S. Korean Stem Cell Companies Announce Litigation Settlement", dated September 10, 2009).

Based in Tampa, Florida, SCII is a regenerative medicine company that is "devoted to the treatment of patients with stem cell transplantation therapy as well as providing the supplies of biological solutions containing new lines of stem cell products," as described on their website. As further described on the company’s website, SCII uses a type of adult stem cell procedure which they refer to simply as "stem cell transplantation (SCT)", which uses exclusively adult stem cells and which, as they explain, "is a surgical procedure that has been used successfully for 70+ years as a treatment of many diseases for which modern medicine has had no therapy, or in which state-of-the-art therapies stopped being effective. A documented 5 million patients have been so treated worldwide to date, evidenced by over 120,000 publications in MEDLINE (see www.nlm.nih.gov) amongst others. SCT is approved for use by the German authorities and the EU."

AmStem International, a wholly owned subsidiary of SCII, is based in Northern California where it specializes in "biotherapeutic and cosmetic stem cell products".

Founded in 2000 and based in Seoul, S. Korea, Histostem houses the largest repository of cord blood stem cells in the world, from which the company has already treated more than 500 patients. The company currently has 56 full-time employees and 28 part-time employees, and an intellectual property portfolio that consists of 5 patents that have already been granted and 6 patent applications that are still pending.

BioTime Creates Asian Subsidiary

The U.S. company BioTime Inc. and the the Hong Kong company Nashan Memorial Medical Institute today announced the collabortive formation of a new BioTime subsidiary.

The new company, to be known as BioTime Asia, will be focused on the development and commercialization throughout China and other Asian nations of stem cell products for occular, hematologic and musculoskeletal treatments. Dr. Lu Daopei, who pioneered China’s first successful adult stem cell transplant from bone marrow, will advise BioTime Asia with the management of clinical trials. It is expected, however, that the emphasis of BioTime Asia’s future clinical trials throughout the Far East will be on human embryonic, not adult, stem cells.

Based in Alameda, California, BioTime is engaged in a number of various medical specializations which include the development of artificial blood plasma solutions for trauma and surgery, in addition to the R&D of low temperature "suspended animation" medicine, and, of course, ongoing embryonic stem cell research, for which the company is perhaps best known. Dr. Michael West, BioTime’s CEO, is also the founder of Geron which has frequently been in news headlines over the past year for its highly controversial human embryonic stem cell (hESC) clinical trials, which were brought to an abrupt halt before they even began, due to an FDA "hold" that was recently imposed. No doubt the decision to transfer hESC clinical trials outside of the U.S. to Asian countries – where regulatory agencies and laws are significantly different from those of the U.S. FDA – was an executive calculation not entirely uninfluenced by the recent FDA-imposed "hold" on Geron’s clinical trials.

Financial terms of the new agreement were not disclosed.

Scientists Study Ways to Stimulate Endogenous Adult Stem Cells

Scientists at Johns Hopkins University are learning how to treat various diseases and injuries with the endogenous adult stem cells that naturally exist within each person’s own body. Under the direction of Dr. Jennifer Elisseef, associate professor in the deparment of biomedical engineering at Johns Hopkins, a number of therapies have already been developed and are currently being tested in clinical trials.

Dr. Elisseef’s lab focuses primarily on the stimulation of endogenous adult stem cells, rather than on the administration of adult stem cells derived from outside sources. As she explains, "It’s going to be cheaper and easier to deliver to patients. We wanted something off-the-shelf, that the surgeon can grab when he needs it."

The first condition for which Dr. Elisseef and her colleagues developed a new type of therapy was damaged knee cartilage – an increasingly common malady among the general public. The scientists found that there is no need to administer adult stem cells from an outside source when there are plenty of adult stem cells residing within each person’s own body, and which exist solely for the purpose of regenerating damaged tissue – although it was only recently that researchers have discovered how to stimulate and utilize these endogenous adult stem cells. Now, with the specific therapy that Dr. Elisseef and her colleagues have developed, patient improvement is rapid and dramatic. According to Dr. Elisseef, "And their function is better. They might not be star athletes, but they can go out and do something like play doubles tennis."

The scientists focused specifically on the holes that develop in knees when a piece of knee cartilage is damaged or missing altogether. Referring to them as "potholes", Dr. Elisseef explained that, "It will gradually get bigger and bigger, and you get a generalized arthritic process happening in the joint. You really want to treat them when they’re a reasonable size." The current, conventional medical treatment, known as "micro-fracture", involves surgically "tapping into" the surrounding bone, from which blood and marrow that are rich in mesenchymal stem cells are allowed to "ooze out", thereby repairing the holes, at least theoretically. In actuality, however, as Dr. Elisseef describes, "The problem is, it ends up making more scar tissue instead of the real cartilage, and it doesn’t fully fill the defects." In a new approach, her lab began developing a hydrogel which they derived from bovine cartilage and which serves as a matrix on which the human body’s endogenous stem cells can grow. After being solidified with ultraviolet light, the hydrogel is attached to the injured cartilage with a type of "glue" that was also developed in Dr. Elisseef’s lab, into which the porous material is allowed to absorb the stem cells from the blood and bone marrow that are released from the micro-fractures. Within a few months, the endogenous stem cells have formed new cartilage. In the first clinical trial – which was conducted in Europe in order to take advantage of lower costs and fewer regulatory hurdles – 15 adults were treated with this therapy, in whom 89% of cartilage defects were found to have healed after a year, which is a significant improvement over the 50% response rate that is found with the conventional treatment.

Dr. Elisseef’s lab is also testing a number of other therapies based upon endogenous adult stem cells, which include a new type of contact lens that can guide the patient’s endogenous stem cells to rebuild damaged corneal tissue, for which she has received a five-year, $4 million U.S. Department of Defense grant that was just awarded this week. As she explains, "Someone’s stable now. They’re in the hospital and have a corneal injury. How can we repair that? How can we rebuild that cornea? We’re hoping that, working with the Deparment of Defense, these people who really have a strong need for this will help move the technology forward." Preliminary studies on rabbits have shown encouraging results.

Her laboratory is also currently involved in the development of a new biomaterial that can be shaped and contoured with beams of light, which she is developing in collaboration with the California-based company Kythera, and which is expected to be useful in reconstructing lost tissue such as from combat injuries or breast lumpectomies. According to Dr. Elisseef, "We make it from fat tissue. We take the fat and process it with chemicals. We take out the cells. We don’t want any foreign DNA in there. And we take out the lipids." What remains is just the connective tissue scaffolding of collagen and proteins, on which the endogenous stem cells can grow and regenerate new tissue.

As Dr. Elisseef further adds, "People are working on the basic science of things and trying to understand how tissue develops but also at the same time developing practical technologies that can be used in the clinic today."

According to Dr. Barley Griffeth, chief of cardiac surgery at the University of Maryland Medical Center, whose own research focuses on the regeneration of cardiac muscle, "A cell in free space doesn’t know what to do. It looks for a comforter to get under."

Dr. Elisseef and her colleagues seem to have discovered just the right type of "comforter" under which endogenous adult stem cells can happily thrive and proliferate.

Race Horse Returns to Racing After Adult Stem Cell Therapy

Lava Man, the 8-year-old gelding who retired from racing last year, is now returning to racing and indefinitely postponing his retirement after showing significant improvement from autologous adult stem cell therapy.

Having dominated the California handicap division for the better part of 2 years, winning 7 Grade 1’s and earning $5.2 million in the process, Lava Man was forced into retirement last fall due to "declining form" which was caused by recurring ankle problems. Now, after having undergone several months of autologous adult stem cell therapy, the horse is showing improved physical condition, his ankle is no longer bothering him and he was able to return to the track two weeks ago for the first time in over a year.

Administered by Dr. Doug Herthel of Alamo Pintado Equine Medical Center, the monthly stem cell procedure was found to successfully regenerate cartilage in Lava Man’s ankle, thereby allowing him to begin light exercise in the spring and summer. According to the horse’s trainer, Doug O’Neill, "Training was part of the study, which we agreed to. He’s been in training for three months, and they have been raving about him." Prior to receiving the adult stem cell therapy, Lava Man was scheduled for retirement at Old Friends in Kentucky, but the retirement has now been postponed indefinitely due to the horse’s significant improvement and resumption of his racing career. Owners Steve Kenly and Jason Wood have confirmed that the horse is now noticeably ready and eager to return to racing. As Kenly stated, "He was telling us, don’t send me to Kentucky. This horse wants to train, probably more so than most horses."

Acquired by STD (Steve, Tracy and Dave Kenly) Racing Stable in August of 2004 for $50,000, Lava Man showed initial improvement with his new trainer O’Neill and went on to sweep the 2006 Grade 1 handicap races in California, which included the Santa Anita Handicap, the Hollywood Gold Cup, and the Pacific Classic at Del Mar. A 3-time winner of the Gold Cup, Lava Man last raced in July of 2008, returning to Hollywood Park in September of this year, and is now continuing to progress noticeably.

As Kenly explains, "We have his best interests in mind, and if he tells us anytime he doesn’t want to do this, that’s it," adding, "Either he competes at the highest level, or nothing."

According to O’Neill, if Lava Man is able to return to a full racing career such as that which he had previously enjoyed, then O’Neill would personally donate all of his trainer purse earnings to the racehorse retirement foundation CARMA.

The autologous adult stem cell therapy that Lava Man has been receiving would seem to indicate that the horse will not be ready for retirement for quite some time.

Adult Stem Cells Treat Cerebral Palsy

Europe’s leading stem cell organization, the XCell-Center of Germany, has released results from a follow-up study in which significant improvement was seen in 67% of 45 cerebral palsy patients who were treated with their own autologous adult stem cells derived from bone marrow.

According to the press release, the most common improvement reported by the patients was improved hand and finger coordination, as well as less upper limb spasticity. Additionally, improvement in leg and foot coordination were observed in nearly half of the patients, with 40% reporting reduced lower limb spasticity, and 20% reporting improvement in walking ability. Speech improvement was also found in 40% of the patients, and 20% reported improved cognition.

As described by Mrs. Ritu Giacobbe, whose 13-year-old son was among the patients treated in the study, "Not long after the treatment, our son started speaking in full sentences. His fine motor skills have improved and he can now hold his fork and eat without help."

Other parents of children who were recently treated at the XCell-Center had nothing but praise for the therapy. According to the mother of a boy who was treated, "For Dominic, the most significant improvement has been his ability to focus his eyes." Similarly, according to the mother of another boy who received the therapy, "Some of the milestones are significant. Harrison can roll himself over now. He holds his head up without his chin sinking into his chest. His speech is clearer."

According to Dr. Ute Tamaschke, pediatric neurosurgeon at the XCell-Center, "These results confirm what we see in Germany on a weekly basis: that treating patients with their own stem cells yields positive results. Many of these children require less care and are now more independent. And this positively impacts the quality of life of the children and their caregivers. We couldn’t be more delighted."

The treatment involves harvesting a small amount of bone marrow from the patient’s hip via a procedure known as thin needle mini-puncture, from which the adult stem cells are then separated, counted, purified and readministered into the patient’s cerebrospinal fluid via a fine spinal needle between the L4 and L5 vertebrae. From the cerebrospinal fluid, the stem cells are automatically transported into the brain where they naturally target and regenerate damaged tissue.

The cost for the treatment for cerebral palsy patients starts at around 9,000 Euros.

With clinical treatment centers in both Cologne and Dusseldorf, Germany, the XCell-Center is the first privately-owned clinic in Europe to specialize in regenerative medicine using autologous adult bone marrow stem cell therapy. Since its founding in January of 2007, the XCell-Center has treated more than 1,600 patients – "safely", as stated on the website.

The XCell-Center uses therapies that are based exclusively upon autologous (in which the donor and recipient are the same person) adult stem cells derived from bone marrow. In no case are embryonic stem cells ever used. As stated clearly on their website, "Therapy with embryonic stem cells is strictly prohibited in Germany. At the XCell-Center, we only use the patient’s own stem cells for therapy."

University of Pittsburgh Receives Two NIH Grants for Novel Stem Cell Research

Scientists at the University of Piitsburgh have announced today the awarding by NIH (the National Institutes of Health) of two separate grants totalling more than $5 million. One of the grants is for the study of embryonic stem cell differentiation, while the other is for investigating a new method of growing adult stem cells on lymph nodes.

Specifically, the $2.9 million, five-year "Transformative R01" grant was awarded to Dr. Eric Lagasse, professor of pathology at the University of Pittsburgh’s School of Medicine and a researcher at the McGowan Institute for Regenerative Medicine. Funding from T-R01 has been designated for the study of a novel method of "using the body’s many lymph nodes as sites for growing replacement cells for other tissues and organs, in essence using them as bioreactors to grow cells within the living body," as described in the press release.

The second grant, in the amount of $2.2 million and entitled "New Innovator", has been awarded to Dr. Ipsita Banerjee, professor of chemical and petroleum engineering and Pitt and also a researcher at McGowan. Funding from Dr. Banerjee’s "New Innovator" award has been designated to study exactly which chemical and molecular signals are involved in determining how embryonic stem cells differentiate.

As Dr. Lagasse explained, "Our regenerative medicine approach for healing damaged tissues and organs might not have moved forward without this new grant concept. This funding supports assessment and rapid translation from the bench to the bedside of nontraditional treatments."

As Dr. Banerjee added, "I want to take a completely different approach to addressing the complex process of cell development, which will potentially advance our understanding of regenerative medicine and stem cell bioengineering as a whole."

The two grants were presented as part of the 2009 NIH "Director’s High-Risk Research Awards", which are a cluster of five-year grants awarded by NIH. This year’s cluster of 115 grants constitute $348 million in total, which include 42 separate T-R01 Awards, 18 separate "Pioneer Awards", and 55 separate "New Innovator Awards" for early-stage investigators.

As described in the press release, "This marks the inaugural year for the T-R01 grants, which support innovative and high-risk projects that could profoundly impact biomedical research and medical treatment, and also is a record year for the number of New Innovator and Pioneer Awards bestowed. Fellow New Innovator and T-R01 recipients include researchers from the Cleveland Clinic, Columbia University, Duke University, Harvard University, Johns Hopkins University School of Medicine, Massachusetts General Hospital, the Massachusetts Institute of Technology, Mount Sinai School of Medicine, Stanford University, and the University of Pennsylvania."

Online Cord Blood Education Program Designed to Improve Public Awareness

In a growing effort to increase public awareness of the importance of storing adult stem cells that are derived from umbilical cord blood, the Cord Blood Registry (CBR) of California has designed a web-based, online education program for the general public.

Results of recent data reflecting dismal public ignorance about stem cells were presented at an international meeting on stem cell science and policy, at which particular emphasis was given to a proprietary, web-based education system developed by the CBR which is specifically designed to help improve public awareness about adult stem cells in general, and about cord blood preservation options in particular. Although the term "stem cells" is commonly and casually thrown around by the general public on a routine basis, there are very few members of the nonscientific lay public who actually understand the scientific facts of stem cells. For example, despite continued efforts by government agencies, consumer advocacy groups and private industry to educate the public about the medical benefits of banking cord blood stem cells, 9 out of 10 expectant mothers still do not bank their child’s umbilical cord blood at all. This web-based education system marks an important step in addressing and hopefully correcting this growing problem.

In a survey of people who had completed the education program, 93% indicated that the program had improved their understanding of stem cells, while 95% indicated that they were highly satisfied with the overall program. Additionally, the CBR invited physicians, nurses and other healthcare providers to provide feedback on the program, and reviews have been submitted by nearly 7,000 individuals from these fields. According to Kelly Harkey, M.D., M.P.H., an obstetrician and gynecologist, "It’s great to finally have an up-to-date, easy-to-understand resource to direct my patients to as they are weighing their cord blood options. Because educating patients about cord blood is encouraged in my state, it’s nice that at the end of the program patients are able to confirm they’ve been educated, which ensures my practice is compliant with state legislation."

According to Heather Brown, vice president of scientific and medical affairs at the CBR, "The goal of this cord blood education program is to help physicians and other labor and delivery specialists provide expecting parents with scientifically accurate information in a compelling format, so they can make an informed choice about the options for preserving their newborn’s cord blood stem cells. This web-based system offers many advantages in that it is accessible at any time of day, it’s easily shared with spouses and other family members, and can provide documentation of the patient’s education and informed choice, especially where public policy encourages or requires education."

As early as 2005, the Institute of Medicine (IOM) had recommended that pregnant women should be educated early in their pregnancies on the value of cord blood stem cells, in order to be able to make an informed decision about cord blood banking. Thus far, however, only 17 states have passed laws that implement the IOM guidelines on cord blood education.

Adult stem cells derived from umbilical cord blood are among some of the most versatile and potent of all types of stem cells, yet they lack the inherent risks and dangers that characterize embryonic stem cells and even iPS cells. Furthermore, umbilical cord blood stem cells have already accumulated a well documented clinical history, having been used in the treatment of nearly 80 different diseases to date.

The online program is divided into categories which include descriptions of cord blood stem cells as well as the collection and storage processes, the use of cord blood in current medical treatments, recent and ongoing developments in new therapies, and storage options that are available to expectant parents. Video segments accompany the content along with personal stories from familes who describe how the banking of their own cord blood has impacted their lives.

As the world’s largest stem cell bank, the Cord Blood Registry is focused on the collection, processing and cryopreservation of adult stem cells that are collected from the umbilical cord blood of healthy, full-term newborns. CBR is accredited by the AABB (the American Association of Blood Banks) and is the family cord blood bank most recommended by obstetricians. As described in their press release, "The company has been profitable and cash flow positive from operations on a cumulative basis since 1999. CBR has processed and stored cord blood units for more than 300,000 newborns from around the world and has released more client cord blood units for specific therapeutic use than any other family cord blood bank. CBR is the leader in research and development efforts in collaboration with the world’s leading clinical researchers focused on advancing regenerative medical therapies using a child’s own cord blood stem cells. The company continues to enhance its industry-leading technical innovations for stem cell collection, processing and storage that optimize quality and cell yield."

If the public is unaware of such facts, however, then it’s a bit difficult for anyone to benefit from the availability of such services.

Hopefully, the "Online Patient Education Center for Cord Blood Banking", which may be viewed at www.cordblood.com/learn, will bring these facts to the attention of more people.